Silicon photonic transceivers in the field of optical communication

Nano Communication Networks - Tập 31 - Trang 100379 - 2022
Yufei Liu1,2, Shuxiao Wang1,2, Jiayao Wang1,2, Xinyu Li1, Mingbin Yu1, Yan Cai1
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
2University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China

Tài liệu tham khảo

Cisco Annual Internet Report (2018-2023) White Paper. Available from: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html. Thompson, 2006, Moore’s law: the future of Si microelectronics, Mater. Today, 9, 20, 10.1016/S1369-7021(06)71539-5 B.J.I.T.J. Doyle, Transistor elements for 30 nm physical gate lengths and beyond, 6 (2) (2002) 42–54. M. Hochberg, T.J.N.p. Baehr-Jones, Towards fabless silicon photonics, 4 (8) (2010) 492–494. https://doi.org/10.1038/nphoton.2010.172. Reed, 2004 Jalali, 2006, Silicon photonics, J. Lightwave Technol., 24, 4600, 10.1109/JLT.2006.885782 Liang, 2009, Photonic integration: Si or InP substrates?, Electron. Lett., 45, 578, 10.1049/el.2009.1279 Deen, 2012 Izhaky, 2006, Development of CMOS-compatible integrated silicon photonics devices, IEEE J. Sel. Top. Quantum Electron., 12, 1688, 10.1109/JSTQE.2006.884089 C.L. Schow, et al. A 24-channel, 300 Gb/s, 8.2 pJ/bit, full-duplex fiber-coupled optical transceiver module based on a single holey CMOS IC, 29 (4) (2011) 542–553. https://doi.org/10.1109/JLT.2010.2101580. De Dobbelaere, 2016, Silicon-photonics-based optical transceivers for high-speed interconnect applications K.-L. Lee, et al. Energy efficiency of optical transceivers in fiber access networks, 4 (9) (2012) A59–A68. https://doi.org/10.1364/JOCN.4.000A59. 2014 100G Optical Transceivers Links: PSM4 vs CWDM4. Available from: http://www.cables-solutions.com/100g-optical-transceivers-links-psm4-vs-cwdm4.html. Mekis, 2012, Scaling CMOS photonics transceivers beyond 100 Gb/s Pinguet, 2015, Advanced silicon photonic transceivers Silicon Photonics Transceivers for Hyper-Scale Datacenters. Available from: https://phoxtrot.eu/wp-content/uploads/2017/01/ECOC-2016-Peter-De-Dobbelaere.pdf. Narasimha, 2007, A fully integrated 4 × 10Gb/s DWDM optoelectronic transceiver in a standard 0.13/spl mu/m CMOS SOI J. Lambrecht, et al. Low-Power (1.5 pJ/b) silicon integrated 106 Gb/s PAM-4 optical transmitter, 38 (2) (2019) 432–438. https://doi.org/10.1109/JLT.2019.2933286. silicon photonics demonstation at OFC 2019. Available from: https://blogs.cisco.com/sp/silicon-photonics-demonstration-at-ofc-2019?dtid=osscdc000283. T. Aoki, et al. Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver, PP (5) (2018) 1. https://doi.org/10.1109/JLT.2018.2797167. T. Aoki, et al. Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver, PP (5) (2018) 1. https://doi.org/10.1109/JLT.2018.2797167. Pitris, 2020, A 400 Gb/s O-band WDM (8 × 50 Gb/s) silicon photonic ring modulator-based transceiver Christy, 2016 Intel Announces First 58Gbps FPGA Transceiver in Volume Production Enabling 400G Ethernet Deployment. Available from: https://newsroom.intel.com/news/intel-announces-first-58gbps-fpga-transceiver-volume-production-enabling-400g-ethernet-deployment/?wapkw=400G#gs.lpcv33. C. Sun, et al. Single-chip microprocessor that communicates directly using light, 528 (7583) (2015) 534–538. https://doi.org/10.1038/nature16454. A.H. Atabaki, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip, 556 (7701) (2018) 349–354. https://doi.org/10.1038/s41586-018-0028-z. H. Takeuchi, et al. Monolithic integrated coherent receiver on InP substrate, 1 (11) (1989) 398–400. https://doi.org/10.1109/68.43392. C.J.I.m. Gunn, CMOS photonics for high-speed interconnects, 26 (2) (2006) 58–66. https://doi.org/10.1109/MM.2006.32. Doerr, 2014, Single-chip silicon photonics 100-Gb/s coherent transceiver C. Doerr, L. Chen, Silicon photonics in optical coherent systems, 106 (12) (2018) 2291–2301. https://doi.org/10.1109/JPROC.2018.2866391. Ogawa, 2012, 20-Gbps silicon photonic waveguide nested Mach–Zehnder QPSK modulator P. Dong, et al. 50-Gb/s silicon quadrature phase-shift keying modulator, 20 (19) (2012) 21181–21186. https://doi.org/10.1364/OE.20.021181. P. Dong, et al. 112-Gb/s monolithic PDM-QPSK modulator in silicon, 20 (26) (2012) B624–B629. https://doi.org/10.1364/OE.20.00B624. Milivojevic, 2013, 112gb/s DP-QPSK transmission over 2427km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver H. Sepehrian, et al. Silicon photonic IQ modulators for 400 Gb/s and beyond, 37 (13) (2019) 3078–3086. https://doi.org/10.1109/JLT.2019.2910491. J. Zhou, et al. High baud rate all-silicon photonics carrier depletion modulators, 38 (2) (2020) 272–281. https://doi.org/10.1109/JLT.2019.2933384. X. Zhou, R. Urata, H. Liu, Beyond 1 Tb/s intra-data center interconnect technology, IM-DD OR coherent? 38 (2) (2020) 475–484. https://doi.org/10.1364/JLT.38.000475. S. Wang, et al. Low-loss through silicon Vias (TSVs) and transmission lines for 3D optoelectronic integration, 238 (2021) 111509. https://doi.org/10.1016/j.mee.2021.111509. P.M. Seiler, et al. Novel concept for VCSEL enhanced silicon photonic coherent transceiver, 9 (10) (2019) 105114. https://doi.org/10.1063/1.5120019.