Subwavelength-diameter silica wires for low-loss optical wave guiding
Tóm tắt
Từ khóa
Tài liệu tham khảo
Murata, H. Handbook of Optical Fibers and Cables 2nd edn (Marcel Dekker, New York, 1996)
Mynbaev, D. K. & Scheiner, L. L. Fiber-Optic Communications Technology (Prentice Hall, New York, 2001)
Marcuse, D. Mode conversion caused by surface imperfections of a dielectric slab waveguide. Bell Syst. Tech. J. 48, 3187–3215 (1969)
Marcuse, D. & Derosier, R. M. Mode conversion caused by diameter changes of a round dielectric waveguide. Bell Syst. Tech. J. 48, 3217–3232 (1969)
Ladouceur, F. Roughness, inhomogeneity, and integrated optics. J. Lightwave Technol. 15, 1020–1025 (1997)
Lee, K. K. et al. Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model. Appl. Phys. Lett. 77, 1617–1619 (2000). Erratum. Appl. Phys. Lett. 77, 2258 (2000)
Boys, C. V. On the production, properties, and some suggested uses of the finest threads. Phil. Mag. 23, 489–499 (1887)
Threlfall, R. On Laboratory Arts (Macmillan, London, 1898)
Knight, J. C., Cheung, G., Jacques, F. & Birks, T. A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997)
Birks, T. A., Wadsworth, W. J. & Russell, P. St. J. Supercontinuum generation in tapered fibers. Opt. Lett. 25, 1415–1417 (2000)
Cai, M. & Vahala, K. Highly efficient hybrid fiber taper coupled microsphere laser. Opt. Lett. 26, 884–886 (2001)
Kakarantzas, G., Dimmick, T. E., Birks, T. A., Le Roux, R. & Russell, P. St. J. Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers. Opt. Lett. 26, 1137–1139 (2001)
Dimmick, T. E., Kakarantzas, G., Birks, T. A. & Russell, P. St. J. Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Appl. Opt. 38, 6845–6848 (1999)
Grellier, A. J. C., Zayer, N. K. & Pannell, C. N. Heat transfer modeling in CO2 laser processing of optical fibres. Opt. Commun. 152, 324–328 (1998)
Wang, Z. L., Gao, R. P. P., Gole, J. L. & Stout, J. D. Silica nanotubes and nanofiber arrays. Adv. Mater. 12, 1938–1940 (2000)
Pan, Z. W., Dai, Z. R., Ma, C. & Wang, Z. L. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817–1822 (2002)
Hu, J. Q., Meng, X. M., Jiang, Y., Lee, C. S. & Lee, S. T. Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers. Adv. Mater. 15, 70–73 (2003)
Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998)
Xia, Y., Rogers, J. A., Paul, K. E. & Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999)
Lee, K. K., Lim, D. R., Kimerling, L. C., Shin, J. & Cerrina, F. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Opt. Lett. 26, 1888–1890 (2001)
Matthewson, M. J., Kurkjian, C. R. & Gulati, S. T. Strength measurement of optical fibers by bending. J. Am. Ceram. Soc. 69, 815–821 (1986)
Krause, J. T., Testardi, L. R. & Thurston, R. N. Deviations from linearity in the dependence of elongation upon force for fibers of simple glass formers and of glass optical light guides. Phys. Chem. Glasses 20, 135–139 (1979)
Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997)
Maier, S. A., Kik, P. G. & Atwater, H. A. Observation of coupled plasmon-polarization modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl. Phys. Lett. 81, 1714–1716 (2002)
Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003)
Snyder, A. W. & Love, J. D. Optical Waveguide Theory (Chapman and Hall, New York, 1983)
Taflove, A. Computational Electrodynamics: The Finite-difference Time-domain Method (Artech House, Boston, 1995)