Aptasensors for Pesticide Detection

Springer Science and Business Media LLC - Tập 10 Số 5 - Trang 229-236 - 2018
Simranjeet Singh Sekhon1, Ga-Young Park1, Dae Young Park1, Sang Yong Kim2, Ji‐Hyang Wee3, Ji‐Young Ahn1, Yang‐Hoon Kim1
1School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
2Department of Food Science and Biotechnology, Shin Ansan University, 135, Sinansandaehak-Ro, Danwon-Gu, Ansan, 15435, Republic of Korea
3Jeonnam Bioindustry Foundation Food Research Institute, Chuncheon, 58275, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

FAO (Food and Agriculture Organization); WHO (World Health Organization). Manual on Development and Use of FAO and WHO Specifications for Pesticides, https:// www.who.int/whopes/resources/9789251092651/en/ (2016).

Jin, B., Xie, L., Guo, Y. & Pang, G. Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int. 46, 399–409 (2012).

Liu, D. et al. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 84, 4185–4191 (2012).

Lee, J. & Lee, H. K. Fully automated dynamic in–syringe liquid–phase microextraction and on–column derivatization of carbamate pesticides with gas chromatography/ mass spectrometric analysis. Anal. Chem. 83, 6856–6861 (2011).

Martínez–Uroz, M. A., Mezcua, M., Valles, N. B. & Fernández–Alba, A. R. Determination of selected pesticides by GCwith simultaneous detection by MS(NCI) and µ–ECD in fruit and vegetable matrices. Anal. Bioanal. Chem. 402, 1365–1372 (2012).

Punzi, J. S., Lamont, M., Haynes, D. & Epstein, R. L. USDA pesticide data program: pesticide residues on fresh and processed fruit and vegetables, grains, meats, milk, and drinking water. Outlooks on Pest Management 16, doi: 10.1564/16jun12 (2005).

Van Dorst, B. tet al. Recent advances in recognition elements of food and environmental biosensors: a review. {iBiosens. Bioelectron}. 26, 1178–1194 (2010).

Wang, L. et al. Development of a specific enzymelinked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticide fenthion in real samples based on monoclonal antibody. Anal. Lett. 44, 1591–1601 (2011).

Xu, Z. L. et al. Monitoring of organophosphorus pesticides in vegetables using monoclonal antibody–based direct competitive ELISA followed by HPLC–MS/MS. Food Chem. 131, 1569–1576 (2012).

Hua, X. et al. Multi–analyte enzyme–linked immunosorbent assay for organophosphorus pesticides and neonicotinoid insecticides using a bispecific monoclonal antibody. Anal. Method. 5, 1556–1563 (2013).

Ercegovich, C. D. et al. Development of a radioimmunoassay for parathion. J. Agric. Food Chem. 29, 559–563 (1981).

Hall, J. C., Deschamps, R. J. & Krieg, K. K. Immunoassays for the detection of 2, 4–D and picloram in river water and urine. J. Agric. Food Chem. 37, 981–984 (1989).

Guo, Y., Tian, J., Liang, C., Zhu, G. & Gui, W. Multiplex bead–array competitive immunoassay for simultaneous detection of three pesticides in vegetables. Microchim. Act. 180, 387–395 (2013).

White, S. in Handbook of Food Analysis, Second Edition–3 Volume Set (CRC Press, USA, 2004).

Verma, N. & Bhardwaj, A. Biosensor technology for pesticides—a review. Biotechnol. Appl. Biochem. 175, 3093–3119 (2015).

Um, H. J., Kim, M., Lee, S. H. & Kim, Y. H. Preventing the formation of positive transcription elongation factor b by human cyclin T1–binding RNA aptamer for anti–HIV transcription. AID. 26, 1599–1605 (2012).

Sekhon, S. S. et al. Aptabody–aptatope interactions in aptablotting assays. Nanoscal. 9, 7464–7475 (2017).

Sekhon, S. S. et al. Defining the copper binding aptamotif and aptamer integrated recovery platform (AIRP). Nanoscal. 9, 2883–2894 (2017).

Sekhon, S. S. et al. Advances in pathogen–associated molecules detection using Aptamer based biosensors. Mol. Cell. Toxicol. 9, 311–317 (2013).

Lee, S. H. et al. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosens. Bioelectron. 68, 272–280 (2015).

Song, M. S. et al. Detecting and Discriminating Shigella sonnei Using an Aptamer–Based Fluorescent Biosensor Platform. Molecules 22, doi: 10.3390/molecules 22050825 (2017).

Lee, K. A. et al. Aptamer–based Sandwich Assay and its Clinical Outlooks for Detecting Lipocalin–2 in Hepatocellular Carcinoma (HCC). Sci. Rep. 5, doi: 10.1038/ srep10897 (2015).

Ruscito, A. & DeRosa, M. C. Small–molecule binding aptamers: Selection strategies, characterization, and applications. Front. Chem. 4, doi: 10.3389/fchem.2016. 00014 (2016).

Cao, F. et al. In vitro selection of DNA aptamers binding pesticide fluoroacetamide. Biosci. Biotechnol. Biochem. 80, 823–832 (2016).

Nguyen, V. T., Kwon, Y. S., Kim, J. H. & Gu, M. B. Multiple GO–SELEX for efficient screening of flexible aptamers. Chem. Comm. 50, 10513–10516 (2014).

Gopinath, S. C. B. Methods developed for SELEX. Anal. Bioanal. Chem. 387, 171–182 (2007).

Lang, Q., Han, L., Hou, C., Wang, F. & Liu, A. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talant. 156, 34–41 (2016).

Hassani, S. et al. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch. Toxicol. 91, 109–130 (2017).

Arduini, F., Guidone, S., Amine, A., Palleschi, G. & Moscone, D. Acetylcholinesterase biosensor based on self–assembled monolayer–modified gold–screen printed electrodes for organophosphorus insecticide detection. Sens. Actuator B–Chem. 179, 201–208 (2013).

Guo, L. et al. Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine–starch color reaction. Anal. Chim. Act. 967, 59–63 (2017).

Zhang, W., Asiri, A. M., Liu, D., Du, D. & Lin, Y. Nanomaterial–based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. Trends Anal. Chem. 54, 1–10 (2014).

Nuo, D. U. A. N., Shi–Jia, W. U. & Zhou–Ping, W. A. N. G. An aptamer–based fluorescence assay for ochratoxin A. Chinese J. Anal. Chem. 39, 300–304 (2011).

Chen, J., Fang, Z., Liu, J. & Zeng, L. A simple and rapid biosensor for ochratoxin A based on a structure–switching signaling aptamer. Food Contro. 25, 555–560 (2012).

Luan, Y., Lu, A., Chen, J., Fu, H. & Xu, L. A Label–Free Aptamer–Based Fluorescent Assay for Cadmium Detection. Appl. Sci. 6, doi:10.3390/app6120432 (2016).

Song, K. M. et al. Gold nanoparticle–based colorimetric detection of kanamycin using a DNA aptamer. Anal. Biochem. 415, 175–181 (2011).

Barthelmebs, L., Jonca, J., Hayat, A., Prieto–Simon, B. & Marty, J. L. Enzyme–linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of ochratoxin A in wine. Food Contro. 22, 737–743 (2011).

Jiang, Y., Tian, J., Hu, K., Zhao, Y. & Zhao, S. Sensitive aptamer–based fluorescence polarization assay for mercury (II) ions and cysteine using silver nanoparticles as a signal amplifier. Microchim. Act. 181, 1423–1430 (2014).

Bonel, L., Vidal, J. C., Duato, P. & Castillo, J. R. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens. Bioelectron. 26, 3254–3259 (2011).

Lu, C., Tang, Z., Liu, C., Kang, L. & Sun, F. Magneticnanobead–based competitive enzyme–linked aptamer assay for the analysis of oxytetracycline in food. Anal. Bioanal. Chem. 407, 4155–4163 (2015).

Cruz–Aguado, J. A. & Penner, G. Determination of ochratoxin A with a DNA aptamer. J. Agric. Food Chem. 56, 10456–10461 (2008).

Mannironi, C., Di Nardo, A., Fruscoloni, P. & Tocchini–Valentini, G. P. In vitro selection of dopamine RNA ligands. Biochemistr. 36, 9726–9734 (1997).

Kato, T., Takemura, T., Yano, K., Ikebukure, K. & Karube, I. In vitro selection of DNA aptamers which bind to cholic acid. Biochim. Biophys. Act. 1493, 12–18 (2000).

Majerfeld, I., Puthenvedu, D. & Yarus, M. RNA affinity for molecular L–histidine; genetic code origins. J. Mol. Evol. 61, 226–235 (2005).

Lee, J. H., Yigit, M. V., Mazumdar, D. & Lu, Y. Molecular diagnostic and drug delivery agents based on aptamer–nanomaterial conjugates. Adv. Drug Delivery Rev. 62, 592–605 (2010).

Wang, P. et al. Aptamer–wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci. China Chem. 59, 237–242 (2016).

Bala, R. et al. Detection of organophosphorus pesticide— Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem. Eng. J. 311, 111–116 (2017).

Dong, J. et al. Surface plasmon resonance sensor for profenofos detection using molecularly imprinted thin film as recognition element. Food Contro. 25, 543–549 (2012).

Shrivastav, A. M., Usha, S. P. & Gupta, B. D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 79, 150–157 (2016).

Xu, G. et al. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers–single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talant. 178, 1046–1052 (2018).

Shi, H. et al. Selective and visible–light–driven profenofos sensing with calixarene receptors on TiO2 nanotube film electrodes. Electrochem. Commun. 19, 111–114 (2012).

Dou, X., Chu, X., Kong, W., Luo, J. & Yang, M. A goldbased nanobeacon probe for fluorescence sensing of organophosphorus pesticides. Anal. Chim. Act. 891, 291–297 (2015).

Weerathunge, P., Ramanathan, R., Shukla, R., Sharma, T. K. & Bansal, V. Aptamer–controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 86, 11937–11941 (2014).

Zhang, C. et al. Organophosphorus pesticides detection using broad–specific single–stranded DNA based fluorescence polarization aptamer assay. Biosens. Bioelectron. 55, 216–219 (2014).

Li, W. A. N. G., Hua, Y. E., Hong–Qing, S. A. N. G. & Dan–Dan, W. A. N. G. Aptamer–based fluorescence assay for detection of Isocarbophos and Profenofos. Chinese J. Anal. Chem. 44, 799–803 (2016).

Li, C., Zhang, G., Wu, S. & Zhang, Q. Aptamer–based microcantilever–array biosensor for profenofos detection. Anal. Chim. Act. 1020, 116–122 (2018).