Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst

Enzyme and Microbial Technology - Tập 116 - Trang 1-5 - 2018
Quang Anh Tuan Le1, Hee Gon Kim2, Yong Hwan Kim2
1Faculty of Biotechnology, Ho Chi Minh City Open University, Viet Nam
2School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 Unist-gil, Ulsan, 44919, Republic of Korea

Tài liệu tham khảo

Heger, 2007 Hunt, 2010, Generation, capture, and utilization of industrial carbon dioxide, ChemSusChem, 3, 306, 10.1002/cssc.200900169 Langanke, 2014, Carbon dioxide (CO2) as sustainable feedstock for polyurethane production, Green Chem., 16, 1865, 10.1039/C3GC41788C Alissandratos, 2015, Biocatalysis for the application of CO2 as a chemical feedstock, Beilstein J. Org. Chem., 11, 2370, 10.3762/bjoc.11.259 Finn, 2012, Molecular approaches to the electrochemical reduction of carbon dioxide, Chem. Commun. (Camb.), 48, 1392, 10.1039/C1CC15393E Hwang, 2015, Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst, Bioresour. Technol., 185, 35, 10.1016/j.biortech.2015.02.086 Choe, 2014, Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas, PLoS One, 9, 10.1371/journal.pone.0103111 Eguchi, 1985, Formic acid production from H2 and bicarbonate by a formateutilizing methanogen, Appl. Microbiol. Biotechnol., 22, 148, 10.1007/BF00250036 Schuchmann, 2013, Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase, Science, 342, 1382, 10.1126/science.1244758 Alissandratos, 2014, Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts, Bioresour. Technol., 164, 7, 10.1016/j.biortech.2014.04.064 Reda, 2008, Reversible interconversion of carbon dioxide and formate by an electroactive enzyme, Proc. Natl. Acad. Sci., 105, 10654, 10.1073/pnas.0801290105 Fredrickson, 2008, Towards environmental systems biology of Shewanella, Nat. Rev. Microbiol., 6, 592, 10.1038/nrmicro1947 Heidelberg, 2002, Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis, Nat. Biotechnol., 20, 1118, 10.1038/nbt749 Myers, 2004, The outer membrane cytochromes of Shewanella oneidensis MR-1 are lipoproteins, Lett. Appl. Microbiol., 39, 466, 10.1111/j.1472-765X.2004.01611.x Myers, 2003, Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1, Lett. Appl. Microbiol., 37, 254, 10.1046/j.1472-765X.2003.01389.x Meshulam-Simon, 2007, Hydrogen metabolism in Shewanella oneidensis MR-1, Appl. Environ. Microbiol., 73, 1153, 10.1128/AEM.01588-06 Pinchuk, 2011, Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions, Appl. Environ. Microbiol., 77, 8234, 10.1128/AEM.05382-11 Kim, 2002, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol., 30, 145, 10.1016/S0141-0229(01)00478-1 Light, 2005, The fundamental conductivity and resistivity of water, Electrochem. Solid-State Lett., 8, E16, 10.1149/1.1836121 Beliaev, 2002, Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors, OMICS, 6, 39, 10.1089/15362310252780834 Kane, 2016, Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor, J. Bacteriol., 198, 1337, 10.1128/JB.00927-15 Jin, 2016, NapB in excess inhibits growth of Shewanella oneidensis by dissipating electrons of the quinol pool, Sci. Rep., 6, 37456, 10.1038/srep37456 Nealson, 1995, Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens, Appl. Environ. Microbiol., 61, 1551, 10.1128/AEM.61.4.1551-1554.1995 Cruz-Garcı, 2007, Respiratory nitrate ammonification by Shewanella oneidensis MR-1, J. Bacteriol., 189, 656, 10.1128/JB.01194-06 Simpson, 2010, The periplasmic nitrate reductase in Shewanella: the resolution, distribution and functional implications of two NAP isoforms, NapEDABC and NapDAGHB, Microbiology, 156, 302, 10.1099/mic.0.034421-0 Gao, 2009, Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA, ISME J., 3, 966, 10.1038/ismej.2009.40 Beliaev, 2002, Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors, OMICS, 6, 39, 10.1089/15362310252780834