Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles
Tài liệu tham khảo
Maeda, 2000, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Control. Release, 65, 271, 10.1016/S0168-3659(99)00248-5
Serda, 2011, Multi-stage delivery nano-particle systems for therapeutic applications, BBA-Gen. Subj., 1810, 317, 10.1016/j.bbagen.2010.05.004
Chandra, 2011, Oxide and hybrid nanostructures for therapeutic applications, Adv. Drug Deliv. Rev., 63, 1267, 10.1016/j.addr.2011.06.003
Cole, 2011, Cancer theranostics: the rise of targeted magnetic nanoparticles, Trends Biotechnol., 29, 323, 10.1016/j.tibtech.2011.03.001
Cukierman, 2010, The benefits and challenges associated with the use of drug delivery systems in cancer therapy, Biochem. Pharmacol., 80, 762, 10.1016/j.bcp.2010.04.020
de Dios, 2010, Multifunctional nanoparticles: analytical prospects, Anal. Chim. Acta, 666, 1, 10.1016/j.aca.2010.03.038
Huang, 2011, Inorganic nanoparticles for cancer imaging and therapy, J. Control. Release, 155, 344, 10.1016/j.jconrel.2011.06.004
Parveen, 2012, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging, Nanomedicine, 8, 147, 10.1016/j.nano.2011.05.016
Thanh, 2010, Functionalisation of nanoparticles for biomedical applications, Nano Today, 5, 213, 10.1016/j.nantod.2010.05.003
Xie, 2010, Nanoparticle-based theranostic agents, Adv. Drug Deliv. Rev., 62, 1064, 10.1016/j.addr.2010.07.009
Klostergaard, 2012, Magnetic nanovectors for drug delivery, Maturitas, 73, 33, 10.1016/j.maturitas.2012.01.019
Owens, 2006, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm., 307, 93, 10.1016/j.ijpharm.2005.10.010
Kumar, 2011, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev., 63, 789, 10.1016/j.addr.2011.03.008
Rai, 2010, Development and applications of photo-triggered theranostic agents, Adv. Drug Deliv. Rev., 62, 1094, 10.1016/j.addr.2010.09.002
Deng, 2012, A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer, Int. J. Nanomedicine, 7, 5053
Lübbe, 1999, Physiological aspects in magnetic drug-targeting, J. Magn. Magn. Mater., 194, 149, 10.1016/S0304-8853(98)00574-5
Rana, 2012, Monolayer coated gold nanoparticles for delivery applications, Adv. Drug Deliv. Rev., 64, 200, 10.1016/j.addr.2011.08.006
Mirza, 2011, Preparation and characterization of doxorubicin functionalized gold nanoparticles, Eur. J. Med. Chem., 46, 1857, 10.1016/j.ejmech.2011.02.048
Nguyen, 2011, Controlled synthesis and biomolecular probe application of gold nanoparticles, Micron, 42, 207, 10.1016/j.micron.2010.09.008
Zong, 2012, A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core–shell nanorods, Talanta, 97, 368, 10.1016/j.talanta.2012.04.047
Wang, 2010, One-step functionalized gold nanorods as intracellular probe with improved SERS performance and reduced cytotoxicity, Biosens Bioelectron., 26, 241, 10.1016/j.bios.2010.06.032
Mohan, 2010, Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking, 7, 1959
Octavia, 2012, Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies, J. Mol. Cell. Cardiol., 52, 1213, 10.1016/j.yjmcc.2012.03.006
Molyneux, 2010, Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration, Cell Biol. Toxicol., 27, 13, 10.1007/s10565-010-9167-1
Li, 1998, Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient, BBA-Biomembr., 1415, 23, 10.1016/S0005-2736(98)00175-8
Medeiros, 2011, Stimuli-responsive magnetic particles for biomedical applications, Int. J. Pharm., 403, 139, 10.1016/j.ijpharm.2010.10.011
You, 2012, Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release, ACS Nanosci., 4, 1033, 10.1021/nn901181c
Maeng, 2010, Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer, Biomaterials, 31, 4995, 10.1016/j.biomaterials.2010.02.068
Ying, 2011, Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: preparation and characteristics, J. Magn. Magn. Mater., 323, 1088, 10.1016/j.jmmm.2010.12.019
Munnier, 2008, Novel method of doxorubicin–SPION reversible association for magnetic drug targeting, Int. J. Pharm., 363, 170, 10.1016/j.ijpharm.2008.07.006
Gautier, 2012, A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting, Int. J. Pharm., 423, 16, 10.1016/j.ijpharm.2011.06.010
Min, 2011, Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers, Biomaterials, 32, 2124, 10.1016/j.biomaterials.2010.11.035
He, 2012, Functionalization of magnetic nanoparticles with dendritic–linear–brush-like triblock copolymers and their drug release properties, Langmuir, 28, 11929, 10.1021/la302546m
Yang, 2011, Multifunctional poly(aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy, Colloid Surf. A, 391, 208, 10.1016/j.colsurfa.2011.04.032
Sahu, 2012, Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent, Carbohydr. Polym., 87, 2593, 10.1016/j.carbpol.2011.11.033
Liao, 2011, Targeting EGFR-overexpressing tumor cells using cetuximab–immunomicelles loaded with doxorubicin and superparamagnetic iron oxide, Eur. J. Radiol., 80, 699
Quan, 2011, HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy, Mol. Pharm., 8, 1669, 10.1021/mp200006f
Park, 2012, Pluronic@Fe3O4 nanoparticles with robust incorporation of doxorubicin by thermo-responsiveness, Int. J. Pharm., 424, 107, 10.1016/j.ijpharm.2011.12.044
Wang, 1998, Endogenous glutathione conjugates: occurrence and biological functions, Pharmacol. Rev., 50, 335
Sanson, 2010, A simple method to achieve high doxorubicin loading in biodegradable polymersomes, J. Control. Release, 147, 428, 10.1016/j.jconrel.2010.07.123
Sanson, 2011, Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy, ACS Nanosci., 5, 1122, 10.1021/nn102762f
Bothun, 2011, Multicomponent folate-targeted magnetoliposomes: design, characterization, and cellular uptake, Nanomedicine: NBM, 7, 797, 10.1016/j.nano.2011.02.007
Hayashi, 2010, High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect, ACS Appl. Mater. Interfaces, 2, 1903, 10.1021/am100237p
Gu, 2012, Gold–doxorubicin nanoconjugates for overcoming multidrug resistance, Nanomedicine, 8, 204, 10.1016/j.nano.2011.06.005
Hua, 2011, Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy, Biomaterials, 32, 8999, 10.1016/j.biomaterials.2011.08.014
Fang, 2012, Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach, J. Control. Release, 162, 233, 10.1016/j.jconrel.2012.06.028
Kievit, 2011, Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro, J. Control. Release, 152, 76, 10.1016/j.jconrel.2011.01.024
Brownlie, 2004, PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility, Int. J. Pharm., 274, 41, 10.1016/j.ijpharm.2003.12.029
Robbens, 2010, Eco-, geno- and human toxicology of bio-active nanoparticles for biomedical applications, Toxicology, 269, 170, 10.1016/j.tox.2009.11.002
Su, 2010, The effect of pendant hydrophobicity on the biological efficacy of polyethylenimine conjugate, Biochem. Eng. J., 49, 21, 10.1016/j.bej.2009.11.006
Agrawal, 2006, Novel drug release profiles from micellar solutions of PLA–PEO–PLA triblock copolymers, J. Control. Release, 112, 64, 10.1016/j.jconrel.2005.12.024
Prabaharan, 2009, Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery, Biomaterials, 30, 6065, 10.1016/j.biomaterials.2009.07.048
Yang, 2011, cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging, Biomaterials, 32, 4151, 10.1016/j.biomaterials.2011.02.006
Ying, 2011, Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin, Carbohydr. Polym., 84, 1357, 10.1016/j.carbpol.2011.01.037
Gu, 2009, Nuclear penetration of surface functionalized gold nanoparticles, Toxicol. Appl. Pharmacol., 237, 196, 10.1016/j.taap.2009.03.009
Munnier, 2011, Doxorubicin delivered to MCF-7 cancer cells by superparamagnetic iron oxide nanoparticles: effects on subcellular distribution and cytotoxicity, J. Nanopart. Res., 13, 959, 10.1007/s11051-010-0093-1
Shkilnyy, 2010, Synthesis and evaluation of novel biocompatible super-paramagnetic iron oxide nanoparticles as magnetic anticancer drug carrier and fluorescence active label, J. Phys. Chem. C, 114, 5850, 10.1021/jp9112188
Book Newell, 2012, Multifunctional gold nanorod theragnostics probed by multi-photon imaging, Eur. J. Med. Chem., 48, 330, 10.1016/j.ejmech.2011.12.036
Chompoosor, 2010, The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles, Small, 6, 2246, 10.1002/smll.201000463
Khlebtsov, 2011, Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies, Chem. Soc. Rev., 40, 1647, 10.1039/C0CS00018C
Szakács, 2006, Targeting multidrug resistance in cancer, Nat. Rev. Drug Discov., 5, 219, 10.1038/nrd1984
Shapira, 2011, Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance, Drug Resist. Update, 14, 150, 10.1016/j.drup.2011.01.003
Sui, 2011, Nuclear drug delivery for cancer chemotherapy, J. Control. Release, 155, 227, 10.1016/j.jconrel.2011.07.041
Mahmoudi, 2010, A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles, Colloid Surf. B, 75, 300, 10.1016/j.colsurfb.2009.08.044
Kneipp, 2006, In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates, Nano Lett., 6, 2225, 10.1021/nl061517x
Nativo, 2008, Uptake and intracellular fate of surface-modified gold nanoparticles, ACS Nanosci., 2, 1639, 10.1021/nn800330a
Kim, 2012, Gold nanoparticles in image-guided cancer therapy, Inorg. Chim. Acta, 393, 154, 10.1016/j.ica.2012.07.001
Schwartzberg, 2006, Synthesis, characterization, and tunable optical properties of hollow gold nanospheres, J. Phys. Chem. B, 110, 19935, 10.1021/jp062136a
Huang, 2010, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13, 10.1016/j.jare.2010.02.002
Peng, 2012, PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography, Biomaterials, 33, 1107, 10.1016/j.biomaterials.2011.10.052
Wang, 2011, Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles, Biomaterials, 32, 2979, 10.1016/j.biomaterials.2011.01.001
Li, 2009, In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles, Cancer Lett., 274, 319, 10.1016/j.canlet.2008.09.024
Astolfo, 2012, In vivo visualization of gold-loaded cells in mice using x-ray computed tomography, Nanomedicine: NBM, 9, 284, 10.1016/j.nano.2012.06.004
Freeman, 1960, Magnetism in medicine, J. Appl. Phys., 31, S404, 10.1063/1.1984765
Ganguly, 2005, Analyzing ferrofluid transport for magnetic drug targeting, J. Magn. Magn. Mater., 289, 331, 10.1016/j.jmmm.2004.11.094
Dandamudi, 2009, External magnet improves antitumor effect of vinblastine and the suppression of metastasis, Cancer Sci., 100, 1537, 10.1111/j.1349-7006.2009.01201.x
Fortin-Ripoche, 2006, Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility, Radiology, 239, 415, 10.1148/radiol.2392042110
Lübbe, 2001, Clinical applications of magnetic drug targeting, J. Surg. Res., 95, 200, 10.1006/jsre.2000.6030
Ruenraroengsak, 2010, Nanosystem drug targeting: facing up to complex realities, J. Control. Release, 141, 265, 10.1016/j.jconrel.2009.10.032
Lu, 2012, Folate-mediated delivery of macromolecular anticancer therapeutic agents, Adv. Drug Deliv. Rev., 54, 675, 10.1016/S0169-409X(02)00042-X
Lu, 2012, Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes, Colloid Surf. B, 89, 1, 10.1016/j.colsurfb.2011.08.001
Garcia-Bennett, 2011, In search of the Holy Grail: folate-targeted nanoparticles for cancer therapy, Biochem. Pharmacol., 81, 976, 10.1016/j.bcp.2011.01.023
Altintas, 2012, Targeting epidermal growth factor receptor in tumors: from conventional monoclonal antibodies via heavy chain-only antibodies to nanobodies, Eur. J. Pharm. Sci., 45, 399, 10.1016/j.ejps.2011.10.015
Mura, 2012, Nanotheranostics for personalized medicine, Adv. Drug Deliv. Rev., 64, 1394, 10.1016/j.addr.2012.06.006
Chen, 2012, Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy, Biomaterials, 33, 8461, 10.1016/j.biomaterials.2012.08.034
You, 2012, Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors, Cancer Res., 72, 4777, 10.1158/0008-5472.CAN-12-1003
You, 2012, Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release, J. Control. Release, 158, 319, 10.1016/j.jconrel.2011.10.028
Gabizon, 2012, Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy, Eur. J. Pharm. Sci., 45, 388, 10.1016/j.ejps.2011.09.006
Barenholz, 2012, Doxil® — the first FDA-approved nano-drug: lessons learned, J. Control. Release, 160, 117, 10.1016/j.jconrel.2012.03.020