Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles

Journal of Controlled Release - Tập 169 - Trang 48-61 - 2013
J. Gautier1, E. Allard-Vannier1, E. Munnier1, M. Soucé1, I. Chourpa1
1EA 6295 “Nanomédicaments et Nanosondes”, Université François-Rabelais, Tours F-37200, France

Tài liệu tham khảo

Maeda, 2000, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Control. Release, 65, 271, 10.1016/S0168-3659(99)00248-5 Serda, 2011, Multi-stage delivery nano-particle systems for therapeutic applications, BBA-Gen. Subj., 1810, 317, 10.1016/j.bbagen.2010.05.004 Chandra, 2011, Oxide and hybrid nanostructures for therapeutic applications, Adv. Drug Deliv. Rev., 63, 1267, 10.1016/j.addr.2011.06.003 Cole, 2011, Cancer theranostics: the rise of targeted magnetic nanoparticles, Trends Biotechnol., 29, 323, 10.1016/j.tibtech.2011.03.001 Cukierman, 2010, The benefits and challenges associated with the use of drug delivery systems in cancer therapy, Biochem. Pharmacol., 80, 762, 10.1016/j.bcp.2010.04.020 de Dios, 2010, Multifunctional nanoparticles: analytical prospects, Anal. Chim. Acta, 666, 1, 10.1016/j.aca.2010.03.038 Huang, 2011, Inorganic nanoparticles for cancer imaging and therapy, J. Control. Release, 155, 344, 10.1016/j.jconrel.2011.06.004 Parveen, 2012, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging, Nanomedicine, 8, 147, 10.1016/j.nano.2011.05.016 Thanh, 2010, Functionalisation of nanoparticles for biomedical applications, Nano Today, 5, 213, 10.1016/j.nantod.2010.05.003 Xie, 2010, Nanoparticle-based theranostic agents, Adv. Drug Deliv. Rev., 62, 1064, 10.1016/j.addr.2010.07.009 Klostergaard, 2012, Magnetic nanovectors for drug delivery, Maturitas, 73, 33, 10.1016/j.maturitas.2012.01.019 Owens, 2006, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm., 307, 93, 10.1016/j.ijpharm.2005.10.010 Kumar, 2011, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev., 63, 789, 10.1016/j.addr.2011.03.008 Rai, 2010, Development and applications of photo-triggered theranostic agents, Adv. Drug Deliv. Rev., 62, 1094, 10.1016/j.addr.2010.09.002 Deng, 2012, A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer, Int. J. Nanomedicine, 7, 5053 Lübbe, 1999, Physiological aspects in magnetic drug-targeting, J. Magn. Magn. Mater., 194, 149, 10.1016/S0304-8853(98)00574-5 Rana, 2012, Monolayer coated gold nanoparticles for delivery applications, Adv. Drug Deliv. Rev., 64, 200, 10.1016/j.addr.2011.08.006 Mirza, 2011, Preparation and characterization of doxorubicin functionalized gold nanoparticles, Eur. J. Med. Chem., 46, 1857, 10.1016/j.ejmech.2011.02.048 Nguyen, 2011, Controlled synthesis and biomolecular probe application of gold nanoparticles, Micron, 42, 207, 10.1016/j.micron.2010.09.008 Zong, 2012, A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core–shell nanorods, Talanta, 97, 368, 10.1016/j.talanta.2012.04.047 Wang, 2010, One-step functionalized gold nanorods as intracellular probe with improved SERS performance and reduced cytotoxicity, Biosens Bioelectron., 26, 241, 10.1016/j.bios.2010.06.032 Mohan, 2010, Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking, 7, 1959 Octavia, 2012, Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies, J. Mol. Cell. Cardiol., 52, 1213, 10.1016/j.yjmcc.2012.03.006 Molyneux, 2010, Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration, Cell Biol. Toxicol., 27, 13, 10.1007/s10565-010-9167-1 Li, 1998, Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient, BBA-Biomembr., 1415, 23, 10.1016/S0005-2736(98)00175-8 Medeiros, 2011, Stimuli-responsive magnetic particles for biomedical applications, Int. J. Pharm., 403, 139, 10.1016/j.ijpharm.2010.10.011 You, 2012, Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release, ACS Nanosci., 4, 1033, 10.1021/nn901181c Maeng, 2010, Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer, Biomaterials, 31, 4995, 10.1016/j.biomaterials.2010.02.068 Ying, 2011, Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: preparation and characteristics, J. Magn. Magn. Mater., 323, 1088, 10.1016/j.jmmm.2010.12.019 Munnier, 2008, Novel method of doxorubicin–SPION reversible association for magnetic drug targeting, Int. J. Pharm., 363, 170, 10.1016/j.ijpharm.2008.07.006 Gautier, 2012, A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting, Int. J. Pharm., 423, 16, 10.1016/j.ijpharm.2011.06.010 Min, 2011, Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers, Biomaterials, 32, 2124, 10.1016/j.biomaterials.2010.11.035 He, 2012, Functionalization of magnetic nanoparticles with dendritic–linear–brush-like triblock copolymers and their drug release properties, Langmuir, 28, 11929, 10.1021/la302546m Yang, 2011, Multifunctional poly(aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy, Colloid Surf. A, 391, 208, 10.1016/j.colsurfa.2011.04.032 Sahu, 2012, Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent, Carbohydr. Polym., 87, 2593, 10.1016/j.carbpol.2011.11.033 Liao, 2011, Targeting EGFR-overexpressing tumor cells using cetuximab–immunomicelles loaded with doxorubicin and superparamagnetic iron oxide, Eur. J. Radiol., 80, 699 Quan, 2011, HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy, Mol. Pharm., 8, 1669, 10.1021/mp200006f Park, 2012, Pluronic@Fe3O4 nanoparticles with robust incorporation of doxorubicin by thermo-responsiveness, Int. J. Pharm., 424, 107, 10.1016/j.ijpharm.2011.12.044 Wang, 1998, Endogenous glutathione conjugates: occurrence and biological functions, Pharmacol. Rev., 50, 335 Sanson, 2010, A simple method to achieve high doxorubicin loading in biodegradable polymersomes, J. Control. Release, 147, 428, 10.1016/j.jconrel.2010.07.123 Sanson, 2011, Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy, ACS Nanosci., 5, 1122, 10.1021/nn102762f Bothun, 2011, Multicomponent folate-targeted magnetoliposomes: design, characterization, and cellular uptake, Nanomedicine: NBM, 7, 797, 10.1016/j.nano.2011.02.007 Hayashi, 2010, High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect, ACS Appl. Mater. Interfaces, 2, 1903, 10.1021/am100237p Gu, 2012, Gold–doxorubicin nanoconjugates for overcoming multidrug resistance, Nanomedicine, 8, 204, 10.1016/j.nano.2011.06.005 Hua, 2011, Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy, Biomaterials, 32, 8999, 10.1016/j.biomaterials.2011.08.014 Fang, 2012, Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach, J. Control. Release, 162, 233, 10.1016/j.jconrel.2012.06.028 Kievit, 2011, Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro, J. Control. Release, 152, 76, 10.1016/j.jconrel.2011.01.024 Brownlie, 2004, PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility, Int. J. Pharm., 274, 41, 10.1016/j.ijpharm.2003.12.029 Robbens, 2010, Eco-, geno- and human toxicology of bio-active nanoparticles for biomedical applications, Toxicology, 269, 170, 10.1016/j.tox.2009.11.002 Su, 2010, The effect of pendant hydrophobicity on the biological efficacy of polyethylenimine conjugate, Biochem. Eng. J., 49, 21, 10.1016/j.bej.2009.11.006 Agrawal, 2006, Novel drug release profiles from micellar solutions of PLA–PEO–PLA triblock copolymers, J. Control. Release, 112, 64, 10.1016/j.jconrel.2005.12.024 Prabaharan, 2009, Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery, Biomaterials, 30, 6065, 10.1016/j.biomaterials.2009.07.048 Yang, 2011, cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging, Biomaterials, 32, 4151, 10.1016/j.biomaterials.2011.02.006 Ying, 2011, Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin, Carbohydr. Polym., 84, 1357, 10.1016/j.carbpol.2011.01.037 Gu, 2009, Nuclear penetration of surface functionalized gold nanoparticles, Toxicol. Appl. Pharmacol., 237, 196, 10.1016/j.taap.2009.03.009 Munnier, 2011, Doxorubicin delivered to MCF-7 cancer cells by superparamagnetic iron oxide nanoparticles: effects on subcellular distribution and cytotoxicity, J. Nanopart. Res., 13, 959, 10.1007/s11051-010-0093-1 Shkilnyy, 2010, Synthesis and evaluation of novel biocompatible super-paramagnetic iron oxide nanoparticles as magnetic anticancer drug carrier and fluorescence active label, J. Phys. Chem. C, 114, 5850, 10.1021/jp9112188 Book Newell, 2012, Multifunctional gold nanorod theragnostics probed by multi-photon imaging, Eur. J. Med. Chem., 48, 330, 10.1016/j.ejmech.2011.12.036 Chompoosor, 2010, The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles, Small, 6, 2246, 10.1002/smll.201000463 Khlebtsov, 2011, Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies, Chem. Soc. Rev., 40, 1647, 10.1039/C0CS00018C Szakács, 2006, Targeting multidrug resistance in cancer, Nat. Rev. Drug Discov., 5, 219, 10.1038/nrd1984 Shapira, 2011, Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance, Drug Resist. Update, 14, 150, 10.1016/j.drup.2011.01.003 Sui, 2011, Nuclear drug delivery for cancer chemotherapy, J. Control. Release, 155, 227, 10.1016/j.jconrel.2011.07.041 Mahmoudi, 2010, A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles, Colloid Surf. B, 75, 300, 10.1016/j.colsurfb.2009.08.044 Kneipp, 2006, In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates, Nano Lett., 6, 2225, 10.1021/nl061517x Nativo, 2008, Uptake and intracellular fate of surface-modified gold nanoparticles, ACS Nanosci., 2, 1639, 10.1021/nn800330a Kim, 2012, Gold nanoparticles in image-guided cancer therapy, Inorg. Chim. Acta, 393, 154, 10.1016/j.ica.2012.07.001 Schwartzberg, 2006, Synthesis, characterization, and tunable optical properties of hollow gold nanospheres, J. Phys. Chem. B, 110, 19935, 10.1021/jp062136a Huang, 2010, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13, 10.1016/j.jare.2010.02.002 Peng, 2012, PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography, Biomaterials, 33, 1107, 10.1016/j.biomaterials.2011.10.052 Wang, 2011, Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles, Biomaterials, 32, 2979, 10.1016/j.biomaterials.2011.01.001 Li, 2009, In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles, Cancer Lett., 274, 319, 10.1016/j.canlet.2008.09.024 Astolfo, 2012, In vivo visualization of gold-loaded cells in mice using x-ray computed tomography, Nanomedicine: NBM, 9, 284, 10.1016/j.nano.2012.06.004 Freeman, 1960, Magnetism in medicine, J. Appl. Phys., 31, S404, 10.1063/1.1984765 Ganguly, 2005, Analyzing ferrofluid transport for magnetic drug targeting, J. Magn. Magn. Mater., 289, 331, 10.1016/j.jmmm.2004.11.094 Dandamudi, 2009, External magnet improves antitumor effect of vinblastine and the suppression of metastasis, Cancer Sci., 100, 1537, 10.1111/j.1349-7006.2009.01201.x Fortin-Ripoche, 2006, Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility, Radiology, 239, 415, 10.1148/radiol.2392042110 Lübbe, 2001, Clinical applications of magnetic drug targeting, J. Surg. Res., 95, 200, 10.1006/jsre.2000.6030 Ruenraroengsak, 2010, Nanosystem drug targeting: facing up to complex realities, J. Control. Release, 141, 265, 10.1016/j.jconrel.2009.10.032 Lu, 2012, Folate-mediated delivery of macromolecular anticancer therapeutic agents, Adv. Drug Deliv. Rev., 54, 675, 10.1016/S0169-409X(02)00042-X Lu, 2012, Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes, Colloid Surf. B, 89, 1, 10.1016/j.colsurfb.2011.08.001 Garcia-Bennett, 2011, In search of the Holy Grail: folate-targeted nanoparticles for cancer therapy, Biochem. Pharmacol., 81, 976, 10.1016/j.bcp.2011.01.023 Altintas, 2012, Targeting epidermal growth factor receptor in tumors: from conventional monoclonal antibodies via heavy chain-only antibodies to nanobodies, Eur. J. Pharm. Sci., 45, 399, 10.1016/j.ejps.2011.10.015 Mura, 2012, Nanotheranostics for personalized medicine, Adv. Drug Deliv. Rev., 64, 1394, 10.1016/j.addr.2012.06.006 Chen, 2012, Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy, Biomaterials, 33, 8461, 10.1016/j.biomaterials.2012.08.034 You, 2012, Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors, Cancer Res., 72, 4777, 10.1158/0008-5472.CAN-12-1003 You, 2012, Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release, J. Control. Release, 158, 319, 10.1016/j.jconrel.2011.10.028 Gabizon, 2012, Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy, Eur. J. Pharm. Sci., 45, 388, 10.1016/j.ejps.2011.09.006 Barenholz, 2012, Doxil® — the first FDA-approved nano-drug: lessons learned, J. Control. Release, 160, 117, 10.1016/j.jconrel.2012.03.020