Access to new highly potent antileukemia, antiviral and antimalarial agents via hybridization of natural products (homo)egonol, thymoquinone and artemisinin

Bioorganic & Medicinal Chemistry - Tập 26 - Trang 3610-3618 - 2018
Aysun Çapcı Karagöz1, Christoph Reiter1, Ean-Jeong Seo2, Lisa Gruber2, Friedrich Hahn3, Maria Leidenberger4, Volker Klein1, Frank Hampel1, Oliver Friedrich4, Manfred Marschall3, Barbara Kappes4, Thomas Efferth2, Svetlana B. Tsogoeva1
1Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
2Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
3Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
4Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany

Tài liệu tham khảo

Newman, 2016, J Nat Prod, 79, 629, 10.1021/acs.jnatprod.5b01055 Silverman, 2012 Organization, 2015 Rogers, 2009, Malar J, 8, 10, 10.1186/1475-2875-8-10 Tietze, 2003, Angew Chem Int Ed, 42, 3996, 10.1002/anie.200200553 Meunier, 2007, Acc Chem Res, 41, 69, 10.1021/ar7000843 Tsogoeva, 2010, Mini Rev Med Chem, 10, 773, 10.2174/138955710791608280 Berube, 2016, Expert Opin Drug Discov, 11, 281, 10.1517/17460441.2016.1135125 Agarwal, 2017, Antimicrob Agents Chemother, 61, e00249, 10.1128/AAC.00249-17 Walsh, 2007, Bioorg Med Chem Lett, 17, 3599, 10.1016/j.bmcl.2007.04.054 Capela, 2011, Antimicrob Agents Chemother, 55, 4698, 10.1128/AAC.05133-11 Reiter, 2014, Eur J Med Chem, 75, 403, 10.1016/j.ejmech.2014.01.043 Wang, 2014, MedChemComm, 5, 927, 10.1039/C4MD00091A Reiter, 2015, Bioorg Med Chem, 23, 5452, 10.1016/j.bmc.2015.07.048 Reiter, 2015, Eur J Med Chem, 97, 164, 10.1016/j.ejmech.2015.04.053 Bock, 2016, Chem Eur J, 22, 5189, 10.1002/chem.201504798 Ackermann, 2017, Oncotarget, 8, 61457, 10.18632/oncotarget.18390 Fröhlich, 2017, ChemMedChem, 12, 226, 10.1002/cmdc.201600594 Fröhlich, 2017, ACS Omega, 2, 2422, 10.1021/acsomega.7b00310 Letis, 2017, Bioorg Med Chem, 25, 3357, 10.1016/j.bmc.2017.04.021 Held, 2017, Nat Commun, 8, 15071, 10.1038/ncomms15071 Fröhlich, 2018, ACS Med Chem Lett Ozturk, 2008, Bioorg Med Chem, 16, 4431, 10.1016/j.bmc.2008.02.057 Emirdağ-Öztürk, 2011, Bioorg Med Chem, 19, 1179, 10.1016/j.bmc.2010.12.044 Hirano, 1994, Life Sci, 55, 1061, 10.1016/0024-3205(94)00641-5 Pauletti, 2000, Phytochemistry, 55, 597, 10.1016/S0031-9422(00)00225-9 Timmers, 2015, J Agric Food Chem, 63, 10459, 10.1021/acs.jafc.5b04781 de Oliveira, 2016, Cytotechnology, 68, 1597, 10.1007/s10616-015-9864-y Shin, 2014, Arch Pharm Res, 37, 1201, 10.1007/s12272-013-0327-8 Jeong, 2014, Biomed Chromatogr, 28, 1816, 10.1002/bmc.3225 Ritchie, 1969, Aust J Chem, 22, 1329, 10.1071/CH9691329 Aoyagi, 1995, Heterocycles, 5, 1077 Duan, 2010, Synthesis, 2010, 1181, 10.1055/s-0029-1219224 Naveen, 2013, J Heterocycl Chem, 50, 1064 More, 2016, Tetrahedron, 72, 7496, 10.1016/j.tet.2016.09.068 El-Dakhakhny, 1963, Planta Med, 11, 465, 10.1055/s-0028-1100266 Woo, 2012, Biochem Pharmacol, 83, 443, 10.1016/j.bcp.2011.09.029 Gali-Muhtasib, 2004, Int J Oncol, 25, 857 Gali-Muhtasib, 2006, Int J Biochem Cell Biol, 38, 1249, 10.1016/j.biocel.2005.10.009 Su, 2015, Sci China Life Sci, 58, 1175, 10.1007/s11427-015-4948-7 Tu, 2016, Angew Chem, 55, 10210, 10.1002/anie.201601967 Efferth, 2001, Int J Oncol, 18, 767 Slack, 2012, MedChemComm, 3, 281, 10.1039/c2md00277a Wang, 2017, ACS Cent Sci, 3, 743, 10.1021/acscentsci.7b00156 Wong, 2017, Med Res Rev, 37, 1492, 10.1002/med.21446 Fröhlich, 2018, Chem Eur J Wang, 2015, Nat Commun, 6, 10111, 10.1038/ncomms10111 Robert, 2001, Angew Chem Int Ed Engl, 40, 1954, 10.1002/1521-3773(20010518)40:10<1954::AID-ANIE1954>3.0.CO;2-9 Haynes, 2004, Angew Chem, 43, 1381, 10.1002/anie.200352343 Ismail, 2016, Angew Chem Int Ed Engl, 55, 6401, 10.1002/anie.201512062 Kim, 2004, J Org Chem, 69, 3242, 10.1021/jo0498765 Liu, 2011, J Nat Prod, 74, 2081, 10.1021/np200308j Yusufi, 2013, Bioorg Med Chem Lett, 23, 3101, 10.1016/j.bmcl.2013.03.003 Bora, 2012, Synth Commun, 42, 1218, 10.1080/00397911.2010.538887 Spingler, 2012, CrystEngComm, 14, 751, 10.1039/C1CE05624G Fröhlich, 2016, J Med Chem, 59, 7360, 10.1021/acs.jmedchem.5b01380 Dive, 2008, ChemMedChem, 3, 383, 10.1002/cmdc.200700127 Horwedel, 2010, J Med Chem, 53, 4842, 10.1021/jm100404t Reiter, 2012, Bioorg Med Chem, 20, 5637, 10.1016/j.bmc.2012.07.015 Beyer, 1998, J Med Chem, 41, 2701, 10.1021/jm9704661 Marschall, 2000, Antimicrob Agents Chemother, 44, 1588, 10.1128/AAC.44.6.1588-1597.2000 O'brien, 2000, FEBS J, 267, 5421 Kuete, 2013, Phytomedicine, 20, 528, 10.1016/j.phymed.2013.02.003 Lambros, 1979, J Parasitol, 418, 10.2307/3280287 Smilkstein, 2004, Antimicrob Agents Chemother, 48, 1803, 10.1128/AAC.48.5.1803-1806.2004 Beez, 2011, Antimicrob Agents Chemother, 55, 50, 10.1128/AAC.00916-10 Chou, 2011, Antiviral Res, 92, 364, 10.1016/j.antiviral.2011.07.018 Hutterer, 2015, Antimicrob Agents Chemother, 59, 2062, 10.1128/AAC.04534-14 Hutterer, 2015, Antivir Res, 124, 101, 10.1016/j.antiviral.2015.10.003