Geological record of prehistoric tsunamis in Mugi town, facing the Nankai Trough, western Japan

Progress in Earth and Planetary Science - Tập 6 - Trang 1-15 - 2019
Yumi Shimada1,2, Shigehiro Fujino3, Yuki Sawai2, Koichiro Tanigawa2, Dan Matsumoto2, Arata Momohara, Megumi Saito-Kato4, Masaki Yamada5, Eri Hirayama1, Takahiro Suzuki1, Catherine Chagué6
1Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
2Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
3Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
4Department of Geology and Paleontology, National Museum of Nature and Science, Tsukuba, Japan
5Earthquake Research Institute, The University of Tokyo, Tokyo, Japan
6School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, Australia

Tóm tắt

Stratigraphic and paleontological investigations in Mugi Town, on the Pacific coast of Shikoku Island, revealed evidence of as many as five tsunami inundations from events along the Nankai Trough between 5581 and 3640 cal yr BP. Nine event deposits (E1–E9) were identified in cores ranging in length from 2 to 6 m, consisting of sandy and gravelly layers interbedded with organic-rich mud. Sedimentary structures in the event deposits observed by computed tomography included normal grading and sharp lower stratigraphic contacts. Event deposits E3, E6, E7, and E8 contained mainly brackish-marine diatom species, suggesting that they had been deposited during inundation by seawater. In addition, fossil diatom assemblages were markedly different above and below event deposits E3, E4, E6, and E8. For example, assemblages below event deposit E6 were dominated by a freshwater species (Ulnaria acus), whereas assemblages above it were predominantly brackish-marine (Diploneis smithii, Fallacia forcipata, and Fallacia tenera). We attributed these changes to the increase of marine influence due to coastal subsidence associated with subduction-zone earthquakes, as documented in the 1946 Showa-Nankai earthquakes. We conclude that event deposits E3, E6, and E8 and perhaps E4 and E7 were deposited by tsunamis generated by subduction zone earthquakes along the Nankai Trough. The ages of these event deposits, as constrained by ten radiocarbon ages, suggest that some of the tsunamis that impacted Mugi Town were correlated with those reported elsewhere along the Nankai Trough, thereby complementing the existing but still incomplete geological record for these events.

Tài liệu tham khảo

Abe F, Sugeno Y, Chigama A (1990) Estimation of the height of the Sanriku Jogan 11 earthquake-tsunami (A.D. 869) in the Sendai Plain. J Seismol Soc Japan 43:513–525 https://doi.org/10.4294/zisin1948.43.4_513 (in Japanese with English abstract). 2nd ser Abe T, Goto K, Sugawara D (2012) Relationship between the maximum extent of tsunami sand and the inundation limit of the 2011 Tohoku-oki tsunami on the Sendai plain, Japan. Sediment Geol 282:142–150 https://doi.org/10.1016/j.sedgeo.2012.05.004 Ariake Bay Research Group (1965) Quaternary system of the Ariake and the Shiranui Bay areas, with special reference to the Ariake soft clay. Earth Sci 11:1–86 (in Japanese) Atwater BF, Hemphill-Haley E (1997) Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington. United States Government Publishing Office, Washington D.C Atwater BF, Musumi-Rokkaku S, Satake K, Tsuji Y, Ueda K, Yamaguchi DK (2005) The orphan tsunami of 1700—Japanese clues to a parent earthquake in North America. University of Washington Press, Seattle Baba T, Okada T, Ashi J, Kanamatsu T (2017) A possible source model of the 1512 Eisho tsunami described in an ancient document, Abstract HDS12–10 presented at the JpGU-AGU Joint Meeting 2017, Makuhari, Japan, pp 20–25 May 2017. https://confit.atlas.jp/guide/event/jpguagu2017/subject/HDS12-10/detail. Accessed 10 Sept 2018 Bronk Ramsey C (2017) Methods for summarizing radiocarbon datasets. Radiocarbon 59:1809–1833. https://org/https://doi.org/10.1017/RDC.2017.108 Central Meteorological Observatory (1947) Showa 21 nen 12 gatsu 21 nichi Nankaido dai jishin chosa gaiho (survey overview of the December 21, Showa 21 Nankaido earthquake). Central Meteorological Observatory, Tokyo (in Japanese) Chiba T, Sawai Y (2014) Reexamination and updating of diatom species for paleoenvironmental reconstructions. Diatom 30:17–30 https://doi.org/10.11464/diatom.30.17 (in Japanese with English abstract) Choowong M, Murakoshi N, Hisada K, Charoentitirat T, Charusiri P, Phantuwongraj S, Wongkok P, Choowong A, Subsayjun R, Chutakositkanon V, Jankaew K, Kanjanapayont P (2008a) Flow conditions of the 2004 Indian Ocean tsunami in Thailand, inferred from capping bedforms and sedimentary structures. Terra Nova 20:141–149 https://doi.org/10.1111/j.1365-3121.2008.00799.x Choowong M, Murakoshi N, Hisada K, Charusiri P, Charoentitirat T, Chutakositkanon V, Jankaew K, Kanjanapayont P, Phantuwongraj S (2008b) 2004 Indian Ocean tsunami inflow and outflow at Phuket, Thailand. Mar Geol 248:179–192 https://doi.org/10.1016/j.margeo.2007.10.011 Editing Committee of the History of Anan City (1995) Anan shishi. Anan City, Anan City (in Japanese) Editing Committee of the History of Hiwasa Town (1984) Hiwasa choshi. Hiwasa Town, Hiwasa Town (in Japanese) Editing Committee of the History of Mugi Town (1976) Mugi choshi. Mugi Town, Mugi Town (in Japanese) Editing Committee of the History of Tokushima Prefecture (1963) Tokushima Kenshi. Tokushima Prefecture, Tokushima City (in Japanese) Fujino S, Kimura H, Komatsubara J, Matsumoto D, Namegaya Y, Sawai Y, Shishikura M (2018) Stratigraphic evidence of historical and prehistoric tsunamis on the Pacific coast of Central Japan: implications for the variable recurrence of tsunamis in the Nankai trough. Quat Sci Rev 201:147–161 https://doi.org/10.1016/j.quascirev.2018.09.026 Garrett E, Fujiwara O, Garrett P, Heyvaert VMA, Shihikura M, Yokoyama Y, Hubert-Ferrari A, Brückner H, Nakamura A, De Batist M, the QuakeRecNankai team (2016) A systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga trough, Japan. Earth-Sci Rev 159:337–357 https://doi.org/10.1016/j.earscirev.2016.06.011 Goff J, McFadgen BG, Chagué-Goff C (2004) Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Mar Geol 204:235–250 https://doi.org/10.1016/S0025-3227(03)00352-9 Hamilton S, Shennan I (2005) Late Holocene relative sea-level changes and the earthquake deformation cycle around upper cook inlet, Alaska. Quat Sci Rev 24:1479–1498 https://doi.org/10.1016/j.quascirev.2004.11.003 Hemphill-Haley E (1996) Diatoms as an aid in identifying late-Holocene tsunami deposits. The Holocene 6:439–448 https://doi.org/10.1177/095968369600600406 Hirabayashi S, Yokoyama Y, Suzuki A, Miyairi Y (2017) Takahiro Aze short-term fluctuations in regional radiocarbon reservoir age recorded in coral skeletons from the Ryukyu Islands in the North-Western Pacific. J Quatern Res 32:1–6 https://doi.org/10.1002/jqs.2923 Hirose K, Gotoh T, Sato H, Yoshikawa S (2004) Diatoms in surface sediments from northeastern part of Osaka Bay, southwestern Japan. Diatom 20:229–240 https://doi.org/10.11464/diatom1985.20.0_229 Ikehara K (1999) Recurrence interval of deep-sea turbidites and its importance for paleoseismicity analysis. J Sediment Soc Japan 49:13–21 https://doi.org/10.4096/jssj1995.49.13 (in Japanese with English abstract) Ishibashi K (2014) Nankai Trough kyodai jishin: Rekishi, Kagaku, Syakai (Nankai Trough great earthquake history, science and society). Iwanami Shoten, Tokyo (in Japanese) Jankaew K, Atwater BF, Sawai Y, Choowong M, Charoentitirat T, Martin ME, Prendergast A (2008) Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455:1228–1231 Joh G (2013) Species diversity of the old genus Navicula Bory (Bacillariophyta) on intertidal sand-flats in the Nakdong River estuary, Korea. J Ecol and Environ 36:371–390 https://doi.org/10.5141/ecoenv.2013.371 Kobayasi H, Idei M, Mayama S, Nagumo T, Osada K (2006) H. Kobayasi’s atlas of Japanese diatoms based on electron microscopy 1. Uchida Rokakuho, Tokyo (in Japanese) Kosugi M (1988) Classification of living diatom assemblages as the indicator of environments, and its application to reconstruction of paleoenvironments. The Quaternary Research (Daiyonki-Kenkyu) 27:1–20 https://doi.org/10.4116/jaqua.27.1 (in Japanese with English abstract) Krammer K, Lange-Bertalot H (1986) Süßwasserflora von Mitteleuropa. Bacillariophyceae 1. Teil: Naviculaceae. Gustav Fischer Verlag, Stuttgart Kumon F (1981) Shimanto Supergroup in the southern part of Tokushima Prefecture, Southwest Japan. J Geol Soc Japan 87:277–295 https://doi.org/10.5575/geosoc.87.277 (in Japanese with English abstract). pl 1. Levkov Z (2009) Amphora sensu lato. In: Lange-Bertalot H (ed) Diatoms of Europe: diatoms of the European inland waters and comparable habitats. Volume, vol 5. A. R. G. Gantner Verlag K. G, Ruggell Lienkaemper JJ, Bronk Ramsey C (2009) OxCal: versatile tool for developing paleoearthquake chronologies—a primer. Seismol Res Lett 89(3):431–434 https://doi.org/10.1785/gssrl.80.3.431 Matsumoto D, Sawai Y, Tanigawa K, Fujiwara O, Namegaya Y, Shishikura M, Kagohara K, Kimura H (2016) Tsunami deposit associated with the 2011 Tohoku-oki tsunami in the Hasunuma site of the Kujukuri coastal plain, Japan. Island Arc 25:369–385 https://doi.org/10.1111/iar.12161 Matsushita M, Sato H, Suzuki S, Yukumoto K, Momohara A, Ueda Y, Katoh S, Maeda Y (2004) Paleoenvironmental analyses of the buried peat deposit during the mid-Holocene at the Desaki coast in Tamano City, Okayama prefecture, Western Japan. Okayama University Earth Science Reports 11:39–47 (in Japanese with English abstract) Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T (2001) The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of Northeast Japan. J Nat Disaster Sci 23:83–88 Minoura K, Nakaya S (1991) Traces of tsunami preserved in inter-tidal lacustrine and marsh deposits: some examples from Northeast Japan. J Geol 99:265–287 https://doi.org/10.1086/629488 Monecke K, Finger W, Klarer D, Kongko W, McAdoo BG, Moore AL, Sudrajat SU (2008) A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature 455:1232–1234 Morton RA, Gelfenbaum G, Jaffe BE (2007) Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment Geol 200:184–207 https://doi.org/10.1016/j.sedgeo.2007.01.003 Murakami H, Shimada T, Itoh S, Yamamoto N, Ishizuka J (1996) Reexamination of the heights of the 1605, 1707 and 1854 Nankai tsunamis along the coast of Shikoku Island. J Nat Disaster Sci 15:39–52 (in Japanese with English abstract) Nagumo T (1995) Simple and safe cleaning methods for diatom samples. Diatom 10:88 https://doi.org/10.11464/diatom1985.10.0_88 (in Japanese) Nagumo T, Kobayasi H (1990) The bleaching method for gently loosening and cleaning a single diatom frustule. Diatom 5:45–50 https://doi.org/10.11464/diatom1985.5.0_45 Nakamura Y, Nishimura Y, Putra PS (2012) Local variation of inundation, sedimentary characteristics, and mineral assemblages of the 2011 Tohoku-oki tsunami on the Misawa coast, Aomori, Japan. Sediment Geol 282:216–227 https://doi.org/10.1016/j.sedgeo.2012.06.003 Nakata T, Shimazaki K (1997) Geo-slicer, a newly invented soil sampler, for high-resolution active fault studies. J Geogr 106:59–69 https://doi.org/10.5026/jgeography.106.59 (in Japanese with English abstract) Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater BF, Shigeno K, Yamaki S (2003) Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424:660–663 Nanayama F, Shigeno K (2006) Inflow and outflow facies from the 1993 tsunami in Southwest Hokkaido. Sediment Geol 187:139–158 https://doi.org/10.1016/j.sedgeo.2005.12.024 Naruse H, Fujino S, Suphawajruksakul A, Jarupongsakul T (2010) Features and formation processes of multiple deposition layers from the 2004 Indian Ocean tsunami at ban Nam Kem, southern Thailand. Island Arc 19:399–411 https://doi.org/10.1111/j.1440-1738.2010.00732.x Nelson AR, Sawai Y, Jennings AE, Bradley A, Gerson L, Sherrod BL, Sabean J, Horton BP (2008) Great-earthquake paleogeodesy and tsunamis of the past 2000 years at Alsea Bay, Central Oregon coast, USA. Quat Sci Rev 27:747–768 https://doi.org/10.1016/j.quascirev.2008.01.001 Okamura M, Matsuoka H (2012) Tsunami taisekibutsu kara wakaru Nankai jishin no kurikaeshi (Nankai earthquake recurrences from tsunami sediment). Kagaku 82:182–191 (in Japanese) Okamura M, Matsuoka H, Tsukuda E, Tsuji Y (2000) Kogan kosho taisekibutsu ni yoru kako ichiman nen no chikaku hendou to rekishi tsunami monitoring (tectonic movements of recent 10000 years and observations of historical tsunamis based on coastal lake deposits). Chikyu Mon 28:162–168 (in Japanese) Onishi CT, Kimura G (1995) Change in fabric of melange in the Shimanto Belt, Japan: change in relative convergence? Tectonics 14:1273–1289 https://doi.org/10.1029/95TC01929 Patrick RM, Reimer CW (1966) The diatoms of the United States exclusive of Alaska and Hawaii, vol 1. Academy of Natural Sciences of Philadelphia, Philadelphia Patrick RM, Reimer CW (1975) The diatoms of the United States exclusive of Alaska and Hawaii, vol 2. Academy of Natural Sciences of Philadelphia, Philadelphia Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, CSM T, JVD PI (2013) Cal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887 https://doi.org/10.2458/azu_js_rc.55.16947 Sabbe K, Vyverman W, Muylaert K (1999) New and little-known Fallacia species (Bacillariophyta) from brackish and marine intertidal sandy sediments in Northwest Europe and North America. Phycologia 38:8–22 https://doi.org/10.2216/i0031-8884-38-1-8.1 Sakaguchi A, Kimura G, Strasser M, Screaton EJ, Curewitz D, Murayama M (2011) Episodic seafloor mud brecciation due to great subduction zone earthquakes. Geology 39:919–922 https://doi.org/10.1130/G32043.1 Sakaguchi Y, Kashima K, Matsubara A (1985) Holocene marine deposits in Hokkaido and their sedimentary environments. Bull Dept Geogr Univ Tokyo 17:1–17 Sangawa A (2007) Jishin no nihonshi (earthquakes in Japanese history). Chuokoron-shinsha, Tokyo (in Japanese) Sawai Y, Fujii Y, Fujiwara O, Kamataki T, Komatsubara J, Okamura Y, Satake K, Shishikura M (2008) Marine incursions of the past 1500 years and evidence of tsunamis at Suijin-numa, a coastal lake facing the Japan trench. The Holocene 18:517–528 https://doi.org/10.1177/0959683608089206 Sawai Y, Jankaew K, Martin ME, Prendergast A, Choowong M, Charoentitirat T (2009b) Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean tsunami at Phra Thong Island, Thailand. Mar Micropaleontol 77:70–79 https://doi.org/10.1016/j.marmicro.2009.07.003 Sawai Y, Kamataki T, Shishikura M, Nasu H, Okamura Y, Satake K, Thomson KH, Matsumoto D, Fujii Y, Komatsubara J, Aung TT (2009a) Aperiodic recurrence of geologically recorded tsunamis during the past 5500 years in eastern Hokkaido, Japan. J Geophys Res 114:B01319 https://doi.org/10.1029/2007JB005503 Sawai Y, Namegaya Y, Okamura Y, Satake K, Shishikura M (2012) Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology. Geophys Res Lett 39:L21309 https://doi.org/10.1029/2012GL053692 Sawai Y, Satake K, Kamataki T, Nasu H, Shishikura M, Atwater BF, Horton BP, Kelsey HM, Nagumo T, Yamaguchi M (2004) Transient uplift after a 17th-century earthquake along the Kuril subduction zone. Science 306:1918–1920 https://doi.org/10.1126/science.1104895 Shennan I, Hamilton S (2006) Coseismic and pre-seismic subsidence associated with great earthquakes in Alaska. Quat Sci Rev 25:1–8 https://doi.org/10.1016/j.quascirev.2005.09.002 Shibata T, Orihashi Y, Kimura G, Hashimoto Y (2008) Underplating of mélange evidenced by the depositional ages: U–Pb dating of zircons from the Shimanto accretionary complex, Southwest Japan. Island Arc 17:376–393 https://doi.org/10.1111/j.1440-1738.2008.00626.x Shishikura M, Echigo T, Heitaro K (2007) Marine reservoir correction for the Pacific coast of Central Japan using 14C ages of marine mollusks uplifted during historical earthquakes. Quat Res 67:286–291 https://doi.org/10.1016/j.yqres.2006.09.003 Shishikura M, Echigo T, Maemoku H, Ishiyama T (2008) Height and ages of uplifted sessile assemblage distributed along the southern coast of the Kii peninsula, south-central Japan: reconstruction of multi-segment earthquake history along the Nankai Trough. Ann Rep Active Fault and Paleoearthquake Res 8:267–280 (in Japanese with English abstract) Suyari K, Yamasaki T (1987) Boundary between the north and South Shimanto subbelts in Tokushima Prefecture. J Sci Coll Gen Educ Univ Tokushima 20:37–46 Pls 1–9 (in Japanese) Szczuciński W, Kokociński M, Rzeszewski M, Chagué-Goff C, Cachão M, Goto K, Sugawara D (2012) Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai plain, Japan: insights from diatoms, nannoliths and grain size distribution. Sediment Geol 282:40–56 https://doi.org/10.1016/j.sedgeo.2012.07.019 Takashimizu Y, Urabe A, Suzuki K, Sato Y (2012) Deposition by the 2011 Tohoku-oki tsunami on coastal lowland controlled by beach ridges near Sendai, Japan. Sediment Geol 282:124–141 https://doi.org/10.1016/j.sedgeo.2012.07.004 Takeuchi Y, Sassa T, Kawaguchi S, Ogasawara M, Yoneyama K, Konnai M (1995) Stimulation of germination of Monochoria vaginalis seeds by seed coat puncture and cotylenins. J Weed Sci and Technol 40:221–224 https://doi.org/10.3719/weed.40.221 Tanabe S, Hori K, Momohara A, Nakashima R (2016) Verification of the “Yayoi regression” in the Tonegawa Lowland, central Japan. J Geol Soc Japan 122:135–153 (in Japanese with English abstract) Tanigawa K, Shishikura M, Fujiwara O, Namegaya Y, Matsumoto D (2018) Mid-to late-Holocene marine inundations inferred from coastal deposits facing the Nankai Trough in Nankoku, Kochi Prefecture, southern Japan. The Holocene 28:867–878 https://doi.org/10.1177/0959683617752837 Tanioka Y, Satake K (2001) Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake. Earth Planets and Space 53:235–241 https://doi.org/10.1186/BF03352380 The Headquarters for Earthquake Research Promotion (2001) Evaluations of occurrence potentials or subduction-zone earthquakes. https://www.jishin.go.jp/main/chousa/kaikou_pdf/nankai.pdf Accessed 1 Feb 2019 (in Japanese) The Headquarters for Earthquake Research Promotion (2013) Evaluations of occurrence potentials or subduction-zone earthquakes. https://www.jishin.go.jp/main/chousa/kaikou_pdf/nankai_2.pdf Accessed 14 Sept 2018 (in Japanese) Tuttle M, Ruffman A, Anderson T, Jeter H (2004) Distinguishing tsunami from storm deposits in eastern North America: the 1929 grand banks tsunami versus the 1991 Halloween storm. Seismol Res Lett 75:117–131 https://doi.org/10.1785/gssrl.75.1.117 Umitsu M (1991) Holocene sea-level changes and coastal evolution in Japan. Holocene sea-level changes and coastal evolution in Japan, vol 30, pp 187–196 https://doi.org/10.4116/jaqua.30.187 Usami T, Ishii H, Imamura T, Takemura M, Matsumura R (2013) Materials for comprehensive list of destructive earthquakes in Japan, 599–2012. University of Tokyo Press, Tokyo (in Japanese) Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts I, Iconographia Diatomologica 7. A.R.G. Gantner Verlag K. G, Ruggell Yamada M, Fujino S (2013) Sedimentary characteristics of the onshore tsunami deposits formed by the 2011Tohoku-oki tsunami in coastal lowlands, Ibaraki and Chiba prefectures. J Sediment Soc Japan 72:13–25 https://doi.org/10.4096/jssj.72.13 (in Japanese with English abstract) Yamaguchi A, Shibata T, Ujiie K, Kimura G (2009) Deformation and fluid flow in seismogenic subduction zone: the Mugi Mélange in the Shimanto Belt. J Geol Soc Japan 115(Supplement):21–36 https://doi.org/10.5575/geosoc.115.S21 (in Japanese) Yoneda M, Kitagawa H, Plicht JVD, Uchida M, Tanaka A, Uehiro T, Shibata Y, Morita M, Ohno T (2000) Pre-bomb marine reservoir ages in the western North Pacific: preliminary result on Kyoto University collection. Nucl Instr Meth Phys Res B 172:377–381 https://doi.org/10.1016/S0168-583X(00)00361-X Yoneda M, Uno H, Shibata Y, Suzuki R, Kumamoto Y, Yoshida K, Sasaki T, Suzuki A, Kawahata H (2007) Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells. Nucl Instr Meth Phys Res B 259:432–437 https://doi.org/10.1016/j.nimb.2007.01.184