The RIB production target for the SPES project

Springer Science and Business Media LLC - Tập 51 - Trang 1-11 - 2015
Alberto Monetti1,2, Alberto Andrighetto1, Carlo Petrovich3, Mattia Manzolaro1, Stefano Corradetti1, Daniele Scarpa1, Francesco Rossetto1, Fernando Martinez Dominguez1,4, Jesus Vasquez1, Massimo Rossignoli1, Michele Calderolla1, Roberto Silingardi1, Aldo Mozzi1, Francesca Borgna1,5, Gianluca Vivian1, Enrico Boratto1, Michele Ballan1, Gianfranco Prete1, Giovanni Meneghetti2
1Laboratori Nazionali di Legnaro, viale dell’Università 2, Legnaro (PD), Italy
2Department of Industrial Engineering (DII), University of Padua, Padova, Italy
3ENEA, Bologna, Italy
4Instituto de Fusión Nuclear, ESS Bilbao, Madrid, Spain
5Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy

Tóm tắt

Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.

Tài liệu tham khảo

A. Andrighetto et al., AIP Conf. Proc. 1491, 58 (2012). G. Prete et al., Phys. Proc. 26, 274 (2012). A. Andrighetto et al., Eur. Phys. J. A 30, 591 (2006). D. Scarpa et al., Eur. Phys. J. A 47, 32 (2011). M. Manzolaro et al., Rev. Sci. Instrum. 83, 02A907 (2012). J. Montano et al., Nucl. Instrum. Methods A 648, 238 (2011). G. Bisoffi, in Proceedings of HIAT 2012 (Chicago, IL USA, 2012). L. Biasetto et al., J. Nucl. Mater. 404, 68 (2010). L. Biasetto et al., Eur. Phys. J. A 42, 517 (2009). S. Corradetti et al., Eur. Phys. J. A 49, 56 (2013). S. Corradetti et al., Eur. Phys. J. A 47, 119 (2011). M. Barbui et al., Nucl. Instrum. Methods B 266, 4289 (2008). M. Manzolaro et al., Nucl. Instrum. Methods B 317, 446 (2013). M. Manzolaro, Engineering of the INFN SPES target -- ion source system (LAP Lambert Academic Publishing, 2012). J.S. Hendricks, MCNPX Version 2.5.e, LA-UR-04-0569 (2004). A. Fassò, FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC05/11, SLAC-R-773. G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007). M. Cavinato et al., Phys. Lett. B 382, 1 (1996). V.A. Rubchenya et al., Nucl. Instrum. Methods A 463, 653 (2001). H.W. Bertini, Phys. Rev. 131, 1801 (1963). Y. Yariv, Z. Fraenkel, Phys. Rev. C 20, 2227 (1979). A.R. Junghans et al., Nucl. Phys. A 629, 635 (1998). J. Barish, HETFIS High-Energy Nucleon-Meson Transport Code with Fission, ORNL-TM-7882 report (Oak Ridge National Laboratory, 1981). F. Atchison, Spallation and Fission in Heavy Metal Nuclei under Medium Energy Proton Bombardment, in Targets for Neutron Beam Spallation Sources, Jul-Conf-34, Kernforschungsanlage Julich GmbH (1980). D.B. Pelowitz, MCNPX 2.7.E Extension, Technical Report LA-UR-11-01502, Los Alamos (2011). . J.R. Beene et al., J. Phys. G: Nucl. Part. Phys. 38, 024002 (2011). A.E. Barzakh et al., Nucl. Instrum. Methods B 126, 150 (1997). N. Sato et al., Rev. Sci. Instrum. 84, 023304 (2013). Y. Liu et al., Nucl. Instrumen. Methods B 243, 442 (2006). L. Penescu et al., Rev. Sci. Instrum. 81, 02A906 (2010). K. Tshoo et al., EPJ Web of Conferences 66, 11016 (2014). A. Andrighetto et al., Eur. Phys. J. A 25, 41 (2005). J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM The Stopping and Range of Ions in Matter (2008). M.G. Saint-Laurent, Spiral Phase-II Final Report (European RTT, 2001). L.C. Carraz et al., Nucl. Instrum. Methods 158, 69 (1979). S. McLain, J.H. Martens (Editors), Reactor Handbook (Interscience Publishers, New York, 1964). Hj. Matzke, Science of Advanced LMFBR Fuels (North Holland, Amsterdam, 1980). J.P. Greene et al., Nucl. Instrum. Methods B 241, 986 (2005). ANSYS Academic Research, Release 15.0. M. Manzolaro et al., Rev. Sci. Instrum. 84, 054902 (2013). W.B. Wilson, T.R. England, A Manual for CINDER’90 Version C00D and Associated Codes and Data, LA-UR-00-Draft (2001). C. Petrovich, SP-FISPACT2001 A Computer Code for Activation and Decay Calculations for Intermediate Energies. A Connection of FISPACT with MCNPX, RT/ERG/2001/10 (ENEA, Bologna, 2001).