Investigating machining characteristics and degradation rate of biodegradable ZM21 magnesium alloy in end milling process

Rajender Kumar1,2, Puneet Katyal1, Kamal Kumar3, Neeraj Sharma4
1Department of Mechanical Engineering, Guru Jambheshwar University of Science & Technology, Hisar, India
2Department of Basic Engineering, CCS Haryana Agricultural University, Hisar, India
3Department of Mechanical Engineering, Punjab Engineering College (Deemed to be University), Chandigarh, India
4Department of Mechanical Engineering, Maharishi Markandeshwar (Deemed to be University), Mullana, India

Tài liệu tham khảo

Chen, 2015, Mesenchymal stem cell and endothelial cell interaction restores endothelial permeability via paracrine hepatocyte growth factor in vitro, Crit. Care, 19, 1, 10.1186/cc14316 Ramakrishna, 2001, Biomedical applications of polymer composite materials: a review, Compos. Sci. Technol., 61, 1189, 10.1016/S0266-3538(00)00241-4 Hernández-Montes, 2017, Titanium dioxide coatings on magnesium alloys for biomaterials: a review, Dyna, 84, 261, 10.15446/dyna.v84n200.59664 Witte, 2008, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci., 12, 63, 10.1016/j.cossms.2009.04.001 Zheng, 2014, Biodegradable metals, Mater. Sci. Eng. R Rep., 77, 1, 10.1016/j.mser.2014.01.001 Uddin, 2017, Enhancing the corrosion resistance of biodegradable Mg based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness, Int. J. Adv. Manuf. Technol., 90, 2095, 10.1007/s00170-016-9536-x Gu, 2013, Long-term corrosion inhibition mechanism of micro-arc oxidation coated AZ31 Mg alloys for biomedical applications, Mater. Des., 46, 66, 10.1016/j.matdes.2012.09.056 Gill, 2021, Surface characteristics and corrosion behavior of wire electrical discharge machining processed Mg-4Zn alloy, J. Mater. Eng. Perform., 30, 2955, 10.1007/s11665-021-05525-6 Kumar, 2021, Effects of alloying elements on performance of biodegradable magnesium alloy, Mater. Today: Proc. Ahuja, 2020, Experimental investigation and optimization of wire electrical discharge machining for surface characteristics and corrosion rate of biodegradable Mg alloy, J. Mater. Eng. Perform., 29, 4117, 10.1007/s11665-020-04905-8 Byrne, 2003, Advancing cutting technology, CIRP Ann., 52, 483, 10.1016/S0007-8506(07)60200-5 Sastry, 2019, Experimental investigation of dry, wet and cryogenic boring of AA 7075 alloy, Mater. Manuf. Process., 34, 814, 10.1080/10426914.2019.1605174 Sivam, 2018, Analysis of residual stresses, thermal stresses, cutting forces and other output responses of face milling operation on ZE41 Magnesium alloy, Int. J. Mod. Manuf. Technol., 10, 92 Hazir, 2019, Response surface methodology integrated with desirability function and genetic algorithm approach for the optimization of CNC machining parameters, Arabian J. Sci. Eng., 44, 2795, 10.1007/s13369-018-3559-6 Sharma, 2021, Multi-response optimization while machining of stainless steel 316L using intelligent approach of grey theory and grey TLBO, World J. Eng., 10.1108/WJE-06-2020-0226 Kumar, 2021, Multi-response optimization of end milling process parameters on ZE41A Mg alloy using Taguchi and TOPSIS approach, Mater. Today: Proc. Tönshoff, 1997, The influence of tool coatings in machining of magnesium, Surf. Coating. Technol., 94, 610, 10.1016/S0257-8972(97)00505-7 Walter, 2013, Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy, Appl. Surf. Sci., 279, 343, 10.1016/j.apsusc.2013.04.096 Yue, 2004, The effect of machined surface condition on the corrosion behavior of magnesium ZM51/SiC composite, Mater. Manuf. Process., 19, 123, 10.1081/AMP-120029823 Shi, 2015, Optimization of process parameters for surface roughness and microhardness in dry milling of magnesium alloy using Taguchi with grey relational analysis, Int. J. Adv. Manuf. Technol., 81, 645, 10.1007/s00170-015-7218-8 Okokpujie, 2020, Comparative performance evaluation of TiO 2 and MWCNTs nano-lubricant effects on surface roughness of AA8112 alloy during end-milling machining for sustainable manufacturing process, Int. J. Adv. Manuf. Technol., 108, 1473, 10.1007/s00170-020-05397-5 Bhirud, 2017, Optimization of process parameters during end milling and prediction of workpiece temperature rise, Arch. Mech. Eng., 64, 10.1515/meceng-2017-0020 Bosse, 2008, Influence of cutting and non-cutting processes on the corrosion behavior and the mechanical properties of magnesium alloys, Magnes. Technol., 383 Guo, 2010, Process mechanics and surface integrity by high-speed dry milling of biodegradable magnesium–calcium implant alloys, CIRP Ann., 59, 151, 10.1016/j.cirp.2010.03.051 Rajeswari, 2017, Experimental investigation of machinability characteristics and multi-response optimization of end milling in aluminium composites using RSM based grey relational analysis, Measurement, 105, 78, 10.1016/j.measurement.2017.04.014 Seçgin, 2021, Multi-objective optimization of Ms58 brass machining operation by multi-axis CNC lathe, Arabian J. Sci. Eng., 46, 2133, 10.1007/s13369-020-04984-8 Aslantas, 2021, Experimental study on the effect of cutting tool geometry in micro milling of inconel 718, Arabian J. Sci. Eng., 46, 2327, 10.1007/s13369-020-05034-z Kokubo, 2006, Leading opinion. How useful is SBF in predicting in vivo bone bioactivity, Biomaterials, 27, 2907, 10.1016/j.biomaterials.2006.01.017 Taltavull, 2014, Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution, J. Mater. Sci. Mater. Med., 25, 329, 10.1007/s10856-013-5087-y Singh, 2021, Investigating TiO2–HA–PCL hybrid coating as an efficient corrosion resistant barrier of ZM21 Mg alloy, J. Magnes. Alloy., 9, 627, 10.1016/j.jma.2020.08.003 Jiang, 2019, Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg–4Zn based alloys, J. Magnes. Alloy., 7, 15, 10.1016/j.jma.2019.02.002 Akhtar, 2016, Effect of machining parameters on surface integrity in high-speed milling of superalloy GH4169/Inconel 718, Mater. Manuf. Process., 31, 620, 10.1080/10426914.2014.994769 Nurhaniza, 2016, Analyzing the effect of machining parameters setting to the surface roughness during end milling of CFRP-aluminium composite laminates, Int. J. Manuf. Eng. Sukumar, 2014, Optimization and prediction of parameters in face milling of Al-6061 using Taguchi and ANN approach, Procedia Eng., 97, 365, 10.1016/j.proeng.2014.12.260 Sarkar, 2021, Machining performance of inconel 718 under dry, MQL, and nanofluid MQL conditions: application of coconut oil (base fluid) and multi-walled carbon nanotubes as additives, Arabian J. Sci. Eng., 46, 2371, 10.1007/s13369-020-05058-5 Lu, 2016, High-speed cutting of AZ31 magnesium alloy, J. Magnes. Alloy., 4, 128, 10.1016/j.jma.2016.04.004 Dinesh, 2015, Effect of cryogenic cooling on machinability and surface quality of bio-degradable ZK60 Mg alloy, Mater. Des., 87, 1030, 10.1016/j.matdes.2015.08.099 Dimić, 2013, Analysis of metal ion release from biomedical implants, J. Inst. Eng., 19, 167 Witecka, 2016, In vitro degradation of ZM21 magnesium alloy in simulated body fluids, Mater. Sci. Eng. C, 65, 59, 10.1016/j.msec.2016.04.019 Tavangarian, 2011, Improving degradation rate and apatite formation ability of nanostructure forsterite, Ceram. Int., 37, 2275, 10.1016/j.ceramint.2011.03.022 Vasu, 2019, Developing composite of ZE41 magnesium alloy-calcium by friction stir processing for biodegradable implant applications, Mater. Today: Proc., 18, 270 Jangra, 2011, Simultaneous optimization of material removal rate and surface roughness for WEDM of WC-Co composite using grey relational analysis along with Taguchi method, Int. J. Ind. Eng. Comput., 2, 479