Recent progress of biomass-derived carbon materials for supercapacitors
Tài liệu tham khảo
Zhang, 2017, Adv. Energy Mater., 7, 1700592, 10.1002/aenm.201700592
Hatfield-Dodds, 2017, J. Clean. Prod., 144, 403, 10.1016/j.jclepro.2016.12.170
Chen, 2012, Chem. Soc. Rev., 41, 7909, 10.1039/c2cs35230c
Chu, 2012, Nature, 488, 294, 10.1038/nature11475
Wang, 2017, Adv. Energy Mater., 7
Yu, 2015, Energy Environ. Sci., 8, 702, 10.1039/C4EE03229B
Wang, 2018, Green Chem., 20, 5031, 10.1039/C8GC01748D
Jiang, 2018, Adv. Sustainable Syst., 2, 10.1002/adsu.201700110
Wang, 2016, Energy Environ. Sci., 9, 729, 10.1039/C5EE03109E
Bai, 2018, Adv. Mater., 31
Strauss, 2018, Adv. Mater., 30, 10.1002/adma.201704449
Kim, 2009, Nature, 457, 706, 10.1038/nature07719
Abnisa, 2014, Energy Convers. Manag., 87, 71, 10.1016/j.enconman.2014.07.007
Gillet, 2017, Green Chem., 19, 4200, 10.1039/C7GC01479A
Niu, 2017, Carbon, 123, 290, 10.1016/j.carbon.2017.07.078
Zhou, 2019, J. Mater. Chem., 7, 4217, 10.1039/C8TA12159A
Wang, 2017, J. Mater. Chem., 5, 2411, 10.1039/C6TA08742F
Jiang, 2018, Sci. China Mater., 61, 133, 10.1007/s40843-017-9169-4
Bi, 2019, J. Mater. Chem., 7, 16028, 10.1039/C9TA04436A
Yang, 2019, Frontiers. Chem., 7, 274, 10.3389/fchem.2019.00274
Lu, 2017, Sustain. Energy. Fuels., 1, 1265, 10.1039/C7SE00099E
Pourhosseini, 2018, ACS Sustain. Chem. Eng., 6, 4746, 10.1021/acssuschemeng.7b03871
Gao, 2017, Nano Energy, 33, 334, 10.1016/j.nanoen.2017.01.045
Zhong, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201701110
Ranaweera, 2017, J. Carbon Res., 3, 25, 10.3390/c3030025
Zou, 2018, J. Power Sources, 378, 579, 10.1016/j.jpowsour.2017.12.081
Lu, 2018, J. Power Sources, 394, 9, 10.1016/j.jpowsour.2018.05.032
Tian, 2018, Mater. Chem. Phys., 213, 267, 10.1016/j.matchemphys.2018.04.026
Xia, 2018, Green Chem., 20, 694, 10.1039/C7GC03426A
Wang, 2018, ACS Sustain. Chem. Eng., 6, 11397, 10.1021/acssuschemeng.8b01334
Ramesh, 2018, ACS Omega, 3, 12832, 10.1021/acsomega.8b01850
Zeng, 2019, Appl. Surf. Sci., 467, 229, 10.1016/j.apsusc.2018.10.089
Liu, 2017, J. Mater. Chem., 5, 13009, 10.1039/C7TA03639F
Wang, 2015, Chemosphere, 119, 646, 10.1016/j.chemosphere.2014.07.084
Kang, 2015, ACS Nano, 9, 11225, 10.1021/acsnano.5b04821
Zheng, 2015, Adv. Mater., 27, 5388, 10.1002/adma.201501452
Yoshizawa, 2000, Fuel, 79, 1461, 10.1016/S0016-2361(00)00011-9
Thines, 2017, Renew. Sustain. Energy Rev., 67, 257, 10.1016/j.rser.2016.09.057
Duan, 2016, Nano Energy, 27, 482, 10.1016/j.nanoen.2016.07.034
Wang, 2012, ACS Appl. Mater. Interfaces, 4, 5800, 10.1021/am302077c
Laurichesse, 2014, Prog. Polym. Sci., 39, 1266, 10.1016/j.progpolymsci.2013.11.004
ArsÃne, 2013, Mater. Res., 16, 903, 10.1590/S1516-14392013005000084
Reed, 2004, Int. J. Energy Res., 28, 131, 10.1002/er.956
Biswas, 2015, BioEnergy Res, 8, 1101, 10.1007/s12155-015-9590-5
Zu, 2016, Carbon, 99, 203, 10.1016/j.carbon.2015.11.079
Shan, 2016, J. Mater. Chem., 4, 13589, 10.1039/C6TA05406D
Wei, 2011, Adv. Energy Mater., 1, 356, 10.1002/aenm.201100019
Tian, 2017, Electrochim. Acta, 241, 170, 10.1016/j.electacta.2017.04.038
Tian, 2017, RSC Adv., 7, 12089, 10.1039/C7RA00767A
Liu, 2015, Green Chem., 17, 4888, 10.1039/C5GC01054C
Zhang, 2015, ChemSusChem, 8, 2114, 10.1002/cssc.201403486
Peng, 2012, Ind. Crop. Prod., 37, 41, 10.1016/j.indcrop.2011.11.031
Wang, 2015, Ind. Crop. Prod., 65, 216, 10.1016/j.indcrop.2014.12.008
Cai, 2017, J. Power Sources, 353, 260, 10.1016/j.jpowsour.2017.04.021
Jin, 2018, J. Power Sources, 384, 270, 10.1016/j.jpowsour.2018.02.089
Sudhan, 2016, Energy Fuels, 31, 977, 10.1021/acs.energyfuels.6b01829
Yu, 2017, RSC Adv., 7, 1067, 10.1039/C6RA25899A
Gopalakrishnan, 2019, New J. Chem., 43, 1186, 10.1039/C8NJ05128C
Wang, 2018, J. Mater. Chem., 6, 1244, 10.1039/C7TA07579K
Liu, 2018, ACS Sustain. Chem. Eng., 6, 11595, 10.1021/acssuschemeng.8b01798
Zhu, 2018, Chem. Eng. Sci., 181, 36, 10.1016/j.ces.2018.02.004
Wang, 2019, J. Alloys Compd., 782, 1103, 10.1016/j.jallcom.2018.12.235
Wu, 2016, RSC Adv., 6, 29996, 10.1039/C5RA25098F
Wei, 2017, J. Mater. Chem., 5, 181, 10.1039/C6TA07826E
Hao, 2017, J. Mater. Chem., 5, 2204, 10.1039/C6TA08169J
Zheng, 2019, ACS Omega, 4, 5904, 10.1021/acsomega.8b03586
Zhu, 2017, Nanoscale, 9, 1237, 10.1039/C6NR08139H
Qu, 2018, J. Alloys Compd., 751, 107, 10.1016/j.jallcom.2018.04.123
Huang, 2017, Electrochim. Acta, 258, 504, 10.1016/j.electacta.2017.11.092
He, 2019, J. Alloys Compd., 773, 11, 10.1016/j.jallcom.2018.09.141
Yang, 2017, J. Phys. D Appl. Phys., 50, 10.1088/1361-6463/50/5/055501
Chang, 2015, Electrochim. Acta, 157, 290, 10.1016/j.electacta.2014.12.169
Wei, 2016, J. Power Sources, 331, 373, 10.1016/j.jpowsour.2016.09.053
Panmand, 2017, Nanoscale, 9, 4801, 10.1039/C7NR00583K
Yu, 2018, ChemSusChem, 11, 1678, 10.1002/cssc.201800202
Wang, 2016, Mater. Lett., 174, 249, 10.1016/j.matlet.2016.03.063
Zhang, 2017, J. Power Sources, 344, 176, 10.1016/j.jpowsour.2017.01.107
Su, 2017, J. Power Sources, 362, 27, 10.1016/j.jpowsour.2017.07.021
Li, 2016, Nano Energy, 19, 165, 10.1016/j.nanoen.2015.10.038
Xie, 2016, J. Mater. Chem., 4, 1637, 10.1039/C5TA09043A
Wei, 2014, Chem. Lett., 43, 216, 10.1246/cl.130837
Zhao, 2017, J. Mater. Chem., 5, 23085, 10.1039/C7TA07010A
Feumba, 2016, European J. Food Sci Techn., 4, 12
Lin, 2019, ACS Sustain. Chem. Eng., 7, 3389, 10.1021/acssuschemeng.8b05593
Dong, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201702695
Ciftyurek, 2019, Environ. Prog. Sustain. Energy, 38, 10.1002/ep.13030
Fu, 2018, ACS Sustain. Chem. Eng., 6, 14751, 10.1021/acssuschemeng.8b03297
Song, 2019, J. Colloid Interface Sci., 535, 276, 10.1016/j.jcis.2018.09.055
Mohammed, 2019, J. Power Sources, 417, 1, 10.1016/j.jpowsour.2019.02.003
Jain, 2015, Microporous Mesoporous Mater., 218, 55, 10.1016/j.micromeso.2015.06.041
Sun, 2013, J. Mater. Chem., 1, 6462, 10.1039/c3ta10897j
Qiu, 2017, Nanoscale, 9, 7408, 10.1039/C7NR02628E
Xu, 2014, Sci. Rep., 4, 5545, 10.1038/srep05545
Yang, 2018, J. Alloys Compd., 741, 360, 10.1016/j.jallcom.2018.01.108
Sun, 2018, Appl. Surf. Sci., 436, 486, 10.1016/j.apsusc.2017.12.067
Xiao, 2018, Int. J. Electrochem. Sci., 13, 5370, 10.20964/2018.06.54
Zhang, 2018, Nanoscale, 10, 2427, 10.1039/C7NR07158B
Hu, 2018, ACS Sustain. Chem. Eng., 6, 13949, 10.1021/acssuschemeng.8b02299
Liu, 2017, J. Solid State Electrochem., 257, 64, 10.1016/j.jssc.2017.07.033
Jung, 2015, Nat. Commun., 6, 7170, 10.1038/ncomms8170
Liu, 2010, J. Med. Plants Res., 4, 1222
Arroyo, 2016, Cell Microbiol., 18, 1239, 10.1111/cmi.12615
Long, 2015, Nano Energy, 12, 141, 10.1016/j.nanoen.2014.12.014
Yadav, 2016, Adv. Mater. Interfaces, 3, 10.1002/admi.201600057
Chen, 2018, Electrochim. Acta, 286, 264, 10.1016/j.electacta.2018.08.030
Guo, 2016, ACS Appl. Mater. Interfaces, 8, 33626, 10.1021/acsami.6b11162
Yao, 2018, ACS Sustain. Chem. Eng., 6, 4695, 10.1021/acssuschemeng.7b03777
Wang, 2019, J. Colloid Interface Sci., 542, 400, 10.1016/j.jcis.2019.02.024
Fu, 2019, J. Alloys Compd., 782, 952, 10.1016/j.jallcom.2018.12.244
Xu, 2018, Appl. Surf. Sci., 444, 661, 10.1016/j.apsusc.2018.03.100
Lei, 2018, J. Power Sources, 379, 74, 10.1016/j.jpowsour.2018.01.032
Niu, 2017, Nano Energy, 36, 322, 10.1016/j.nanoen.2017.04.042
Tang, 2018, J. Mater. Sci., 10, 1
Xu, 2018, J. Mater. Chem., 5, 15340, 10.1039/C8TA04777D
Liu, 2018, Nano Energy, 51, 366, 10.1016/j.nanoen.2018.06.037
Zhou, 2018, J. Solid State Chem., 268, 149, 10.1016/j.jssc.2018.08.041
Mondal, 2017, Microporous Mesoporous Mater., 246, 72, 10.1016/j.micromeso.2017.03.019
Qian, 2014, Energy Environ. Sci., 7, 379, 10.1039/C3EE43111H
Ling, 2016, Adv. Funct. Mater., 26, 111, 10.1002/adfm.201504004
Tian, 2017, J. Power Sources, 359, 88, 10.1016/j.jpowsour.2017.05.054
Wang, 2019, RSC Adv., 9, 14797, 10.1039/C9RA01255A
Saidur, 2011, Renew. Sustain. Energy Rev., 15, 2262, 10.1016/j.rser.2011.02.015
Xie, 2016, Carbohydr. Polym., 151, 725, 10.1016/j.carbpol.2016.06.011
Zhang, 2017, Adv. Funct. Mater., 27
Liu, 2018, J. Power Sources, 381, 116, 10.1016/j.jpowsour.2018.02.014
Lu, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201702545
Zhao, 2018, Electrochim. Acta, 291, 287, 10.1016/j.electacta.2018.09.136
Liu, 2017, J. Power Sources, 341, 309, 10.1016/j.jpowsour.2016.12.022
Yan, 2018, ChemElectroChem, 5, 1874, 10.1002/celc.201800068
Dong, 2018, J. Mater. Chem., 6, 15954, 10.1039/C8TA04080J
Liu, 2016, Electrochim. Acta, 208, 55, 10.1016/j.electacta.2016.05.020
Genovese, 2017, J. Mater. Chem., 5, 3939, 10.1039/C6TA10382K
Yang, 2018, J. Colloid Interface Sci., 528, 208, 10.1016/j.jcis.2018.05.050
Hu, 2010, Adv. Mater., 22, 813, 10.1002/adma.200902812
Wu, 2015, Nano Energy, 13, 527, 10.1016/j.nanoen.2015.03.013
Chen, 2018, ACS Omega, 3, 4724, 10.1021/acsomega.8b00210
Lin, 2018, ACS Omega, 3, 13283, 10.1021/acsomega.8b01718
Zhang, 2019, Chem. Eng. J., 355, 309, 10.1016/j.cej.2018.08.169
Karnan, 2016, ACS Appl. Mater. Interfaces, 8, 35191, 10.1021/acsami.6b10704
Wang, 2017, J. Mater. Chem., 5, 15759, 10.1039/C7TA04178K
Norouzi, 2016, Bioresour. Technol., 219, 643, 10.1016/j.biortech.2016.08.017
Huang, 2017, J. Mater. Sci., 52, 478, 10.1007/s10853-016-0347-0
Zhou, 2017, Applied. Mater. Today, 7, 47, 10.1016/j.apmt.2017.01.008
Wang, 2017, J. Power Sources, 363, 375, 10.1016/j.jpowsour.2017.07.097
Gong, 2017, Green Chem., 19, 4132, 10.1039/C7GC01681F
Zhang, 2017, Int. J. Electrochem. Sci., 12, 7844, 10.20964/2017.08.37
Ma, 2017, Nano, 12, 10.1142/S179329201750103X
Mondal, 2017, Chemistry, 23, 3683, 10.1002/chem.201605019
Cui, 2016, Adv. Funct. Mater., 26, 8487, 10.1002/adfm.201603933
Thangavel, 2017, ChemSusChem, 10, 2805, 10.1002/cssc.201700492
Yan, 2016, Electrochim. Acta, 191, 385, 10.1016/j.electacta.2016.01.105
Gaddam, 2016, Nano Energy, 26, 346, 10.1016/j.nanoen.2016.05.047
Rufford, 2010, J. Power Sources, 195, 912, 10.1016/j.jpowsour.2009.08.048
Gao, 2014, J. Mater. Chem., 2, 3317, 10.1039/c3ta14281g
Tao, 2019, J. Taiwan. Inst. Chem. Eng., 95, 217, 10.1016/j.jtice.2018.07.005
Wang, 2017, J. Power Sources, 358, 85, 10.1016/j.jpowsour.2017.05.011
Wang, 2013, ChemSusChem, 6, 880, 10.1002/cssc.201200990
Zheng, 2014, Chem. Mater., 26, 6896, 10.1021/cm503845q
Hao, 2014, Nanoscale, 6, 12120, 10.1039/C4NR03574G
Huang, 2008, Chemistry, 14, 6614, 10.1002/chem.200800639
Frackowiak, 2007, Phys. Chem. Chem. Phys., 9, 1774, 10.1039/b618139m
Wang, 2008, J. Phys. Chem. C, 112, 9950, 10.1021/jp800173z
Xu, 2015, Adv. Funct. Mater., 25, 3193, 10.1002/adfm.201500538
Wang, 2012, J. Mater. Chem., 22, 23710, 10.1039/c2jm34066f
Zhang, 2016, ACS Appl. Mater. Interfaces, 8, 4233, 10.1021/acsami.5b12484
Hao, 2015, ACS Nano, 9, 2556, 10.1021/nn506394r
Zhou, 2013, J. Mater. Chem., 1, 8488, 10.1039/c3ta11667k
Lu, 2019, J. Mater. Chem., 7, 22579, 10.1039/C9TA05891E
Liu, 2019, Carbon, 153, 707, 10.1016/j.carbon.2019.07.060
Huang, 2013, ChemSusChem, 6, 2330, 10.1002/cssc.201300457
Xu, 2015, Green Chem., 17, 1668, 10.1039/C4GC02185A
Jimenez, 2018, J. Chem. Inf. Model., 58, 287, 10.1021/acs.jcim.7b00650
Tabor, 2018, Nat. Reviews Mater., 3, 5, 10.1038/s41578-018-0005-z
Perea, 2017, J. Phys. Chem. C, 121, 18153, 10.1021/acs.jpcc.7b03228
Su, 2019, Chem. Eng. Sci., 202, 186, 10.1016/j.ces.2019.03.037
Zhou, 2020, Carbon, 157, 147, 10.1016/j.carbon.2019.08.090
Chaoui, 2017, Elec. Power Syst. Res., 146, 189, 10.1016/j.epsr.2017.01.032
Mozaryn, 2018, IFAC PapersOnLine, 51, 23, 10.1016/j.ifacol.2018.09.524
Farsi, 2007, Comput. Mater. Sci., 39, 678, 10.1016/j.commatsci.2006.08.024
Dongale, 2015, Mater. Sci. Semicond. Process., 36, 43, 10.1016/j.mssp.2015.02.084
Weigert, 2011, J. Power Sources, 196, 4061, 10.1016/j.jpowsour.2010.10.075
Zhu, 2018, Mater. Lett., 233, 294, 10.1016/j.matlet.2018.09.028
Wang, 2018, Small Methods, 1800367, 10.1002/smtd.201800367
Herou, 2018, Curr. Opin. Green Sustain. Chem., 9, 18, 10.1016/j.cogsc.2017.10.005