Overexpression of mutant cell division cycle 25 homolog B (CDC25B) enhances the efficiency of selection in Chinese hamster ovary cells
Tóm tắt
The effects of mutant cell division cycle 25 homolog B (CDC25B) overexpression on the generation of cells producing a monoclonal antibody were investigated in Chinese hamster ovary (CHO) cells. Mutant CDC25B (m-CDC25B) expression plasmids were transfected into CHO DG44-derived cells producing a monoclonal antibody, and the frequency of highly producing cells was assessed following gene amplification in the presence of 250 nM methotrexate. Most of the clones obtained from the m-CDC25B-overexpressing cells had higher antibody titers than did mock-transfected control cells. This arose from either higher transgene copy numbers or higher mRNA expression levels for the antibody. However, the high mRNA expression levels were not always accompanied by increases in transgene copy numbers. Our results suggest that cells producing high levels of a monoclonal antibody can be selected efficiently using m-CDC25B overexpression.
Tài liệu tham khảo
Aressy B, Bugler B, Valette A, Biard D, Ducommun B (2008) Moderate variations in CDC25B protein levels modulate the response to DNA damaging agents. Cell Cycle 7:2234–2240
Boutros R, Lobjois V, Ducommun B (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7:495–507. doi:10.1038/nrc2169
Bugler B, Quaranta M, Aressy B, Brezak MC, Prevost G, Ducommun B (2006) Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol Cancer Ther 5:1446–1451. doi:10.1158/1535-7163.MCT-06-0099
Bugler B, Schmitt E, Aressy B, Ducommun B (2010) Unscheduled expression of CDC25B in S-phase leads to replicative stress and DNA damage. Mol Cancer 9:29. doi:10.1186/1476-4598-9-29
Cacciatore JJ, Chasin LA, Leonard EF (2010) Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnol Adv 28:673–681. doi:10.1016/j.biotechadv.2010.04.003
Cacciatore JJ, Leonard EF, Chasin LA (2012) The isolation of CHO cells with a site conferring a high and reproducible transgene amplification rate. J Biotechnol 164:346–353. doi:10.1016/j.jbiotec.2013.01.016
Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T (2012a) Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines. Biotechnol Bioeng 109:1357–1367. doi:10.1002/bit.24347
Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T (2012b) Fluorescence in situ hybridization using bacterial artificial chromosome (BAC) clones for the analysis of chromosome rearrangement in Chinese hamster ovary cells. Methods 56:418–423. doi:10.1016/j.ymeth.2011.11.002
Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89:215–225
Davezac N, Baldin V, Gabrielli B, Forrest A, Theis-Febvre N, Yashida M, Ducommun B (2000) Regulation of CDC25B phosphatases subcellular localization. Oncogene 19:2179–2185. doi:10.1038/sj.onc.1203545
Forrest A, Gabrielli B (2001) Cdc25B activity is regulated by 14-3-3. Oncogene 20:4393–4401
Giles N, Forrest A, Gabrielli B (2003) 14-3-3 acts as an intramolecular bridge to regulate cdc25B localization and activity. J Biol Chem 278:28580–28587. doi:10.1074/jbc.M304027200
Karlsson-Rosenthal C, Millar JB (2006) Cdc25: mechanisms of checkpoint inhibition and recovery. Trends Cell Biol 16:285–292. doi:10.1016/j.tcb.2006.04.002
Kieffer I, Lorenzo C, Dozier C, Schmitt E, Ducommun B (2007) Differential mitotic degradation of the CDC25B phosphatase variants. Oncogene 26:7847–7858. doi:10.1038/sj.onc.1210596
Kim WD, Tokunaga M, Ozaki H, Ishibashi T, Honda K, Kajiura H, Fujiyama K, Asano R, Kumagai I, Omasa T, Ohtake H (2010) Glycosylation pattern of humanized IgG-like bispecific antibody produced by recombinant CHO cells. Appl Microbiol Biotechnol 85:535–542. doi:10.1007/s00253-009-2152-z
Lammer C, Wagerer S, Saffrich R, Mertens D, Ansorge W, Hoffmann I (1998) The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J Cell Sci 111:2445–2453
Lee KH, Onitsuka M, Honda K, Ohtake H, Omasa T (2013a) Rapid construction of transgene-amplified CHO cell lines by cell cycle checkpoint engineering. Appl Microbiol Biotechnol 97:5731–5741. doi:10.1007/s00253-013-4923-9
Lee KH, Tsutsui T, Honda K, Asano R, Kumagai I, Ohtake H, Omasa T (2013b) Generation of high-producing cell lines by overexpression of cell division cycle 25 homolog A in Chinese hamster ovary cells. J Biosci Bioeng 116:754–760. doi:10.1016/j.jbiosc.2013.05.032
Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK (2005) Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 171:35–45. doi:10.1083/jcb.200503066
Ng SK, Wang DI, Yap MG (2007) Application of destabilizing sequences on selection marker for improved recombinant protein productivity in CHO-DG44. Metab Eng 9:304–316. doi:10.1016/j.ymben.2007.01.001
Omasa T (2002) Gene amplification and its application in cell and tissue engineering. J Biosci Bioeng 94(6):600–605. doi:10.1016/S1389-1723(02)80201-8
Omasa T, Onitsuka M, Kim WD (2010) Cell engineering and cultivation of Chinese hamster ovary (CHO) cells. Curr Pharm Biotechnol 11:233–240. doi:BSP/CPB/E-Pub/0042-11-3
Onitsuka M, Kim WD, Ozaki H, Kawaguchi A, Honda K, Kajiura H, Fujiyama K, Asano R, Kumagai I, Ohtake H, Omasa T (2012) Enhancement of sialylation on humanized IgG-like bispecific antibody by overexpression of alpha2,6-sialyltransferase derived from Chinese hamster ovary cells. Appl Microbiol Biotechnol 94:69–80. doi:10.1007/s00253-011-3814-1
Peroni CN, Soares CR, Gimbo E, Morganti L, Ribela MT, Bartolini P (2002) High-level expression of human thyroid-stimulating hormone in Chinese hamster ovary cells by co-transfection of dicistronic expression vectors followed by a dual-marker amplification strategy. Biotechnol Appl Biochem 35:19–26
Wilson C, Bellen HJ, Gehring WJ (1990) Position effects on eukaryotic gene expression. Annu Rev Cell Biol 6:679–714. doi:10.1146/annurev.cb.06.110190.003335
Wu SC, Hong WW, Liu JH (2008) Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells. Vaccine 26:4969–4974. doi:10.1016/j.vaccine.2008.06.081
Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398. doi:10.1038/nbt1026