Hydrothermally reduced nano porous graphene–polyaniline nanofiber composites for supercapacitor
Tài liệu tham khảo
Miller, 2008, Materials science. Electrochemical capacitors for energy management, Science, 321, 651, 10.1126/science.1158736
Liu, 2010, Advanced materials for energy storage, Adv. Mater., 22, E28, 10.1002/adma.200903328
Stoller, 2008, Graphene-based ultracapacitors, Nano Lett., 8, 3498, 10.1021/nl802558y
Xia, 2009, Measurement of the quantum capacitance of graphene, Nat. Nanotechnol., 4, 505, 10.1038/nnano.2009.177
Vivekchand, 2008, Graphene-based electrochemical supercapacitors, J. Chem. Sci., 120, 9, 10.1007/s12039-008-0002-7
Lin, 2011, Superior capacitance of functionalized graphene, J. Phys. Chem. C, 115, 7120, 10.1021/jp2007073
Rajagopalan, 2014, Reduced chemically modified graphene oxide for supercapacitor electrode, Nanoscale Res. Lett., 9, 535, 10.1186/1556-276X-9-535
Zhu, 2010, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon, 48, 2118, 10.1016/j.carbon.2010.02.001
Rudge, 1994, Conducting polymers as active materials in electrochemical capacitors, J. Power Sources, 47, 89, 10.1016/0378-7753(94)80053-7
Laforgue, 1999, Polythiophene-based supercapacitors, J. Power Sources, 80, 142, 10.1016/S0378-7753(98)00258-4
Mastragostino, 2001, Polymer-based supercapacitors, J. Power Sources, 97–98, 812, 10.1016/S0378-7753(01)00613-9
Arbizzani, 2001, New trends in electrochemical supercapacitors, J. Power Sources, 100, 164, 10.1016/S0378-7753(01)00892-8
Gupta, 2005, Electrochemically deposited polyaniline nanowire’s network a high-performance electrode material for redox supercapacitor, Electrochem. Solid-State Lett., 8, A630, 10.1149/1.2087207
Belanger, 2000, Characterization and longterm performance of polyaniline based electrochemical capacitors, J. Electrochem. Soc., 147, 2923, 10.1149/1.1393626
Yan, 2010, Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance, Carbon, 48, 487, 10.1016/j.carbon.2009.09.066
Wang, 2009, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode, ACS Nano, 3, 1745, 10.1021/nn900297m
Xiao, 2000, Direct synthesis of a polyaniline-intercalated graphite oxide nanocomposite, Carbon, 38, 626, 10.1016/S0008-6223(00)00005-1
Wang, 2009, Graphene oxide doped polyaniline for supercapacitors, Electrochem. Commun., 11, 1158, 10.1016/j.elecom.2009.03.036
Liu, 1999, Synthesis of polyaniline-intercalated graphite oxide by an in situ oxidative polymerization reaction, Carbon, 37, 706, 10.1016/S0008-6223(99)00037-8
Gao, 2013, A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material, Energy Fuels, 27, 568, 10.1021/ef301795g
Zhang, 2010, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater., 22, 1392, 10.1021/cm902876u
Yuan, 2013, The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet, Sci. Rep., 3, 2248, 10.1038/srep02248
Banerjee, 2013, Electrochemistry at the edge of a single graphene layer in a nanopore, ACS Nano, 7, 834, 10.1021/nn305400n
Pak, 2014, Impact of graphene edges on enhancing the performance of electrochemical double layer capacitors, J. Phys. Chem. C, 118, 21770, 10.1021/jp504458z
Yan, 2007, NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization, Sens. Actuat. B, 123, 107, 10.1016/j.snb.2006.07.031
Zhang, 2004, Nanofibers of polyaniline synthesized by interfacial polymerization, Synth. Met., 145, 23, 10.1016/j.synthmet.2004.03.012
Gao, 2004, Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles, Polymer, 45, 3017, 10.1016/j.polymer.2004.03.002
Kumar, 2012, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors, ACS Nano, 6, 1715, 10.1021/nn204688c
Wu, 2010, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films, ACS Nano, 4, 1963, 10.1021/nn1000035
Stengl, 2013, Blue and green luminescence of reduced graphene oxide quantum dots, Carbon, 63, 537, 10.1016/j.carbon.2013.07.031
Zhu, 2012, Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission, RSC Adv., 2, 2717, 10.1039/c2ra20182h
Fan, 2012, The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets, Carbon, 50, 3724, 10.1016/j.carbon.2012.03.046
Seredych, 2010, Graphite oxides obtained from porous graphite: the role of surface chemistry and texture in ammonia retention at ambient conditions, Adv. Funct. Mater., 20, 1670, 10.1002/adfm.201000061
You, 2013, Effect of synthesis method on solvation and exfoliation of graphite oxide, Carbon, 52, 171, 10.1016/j.carbon.2012.09.018