Relationships Between the 2-Metric Dimension and the 2-Adjacency Dimension in the Lexicographic Product of Graphs

Springer Science and Business Media LLC - Tập 32 - Trang 2367-2392 - 2016
A. Estrada-Moreno1, I. G. Yero2, J. A. Rodríguez-Velázquez1
1Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
2Departamento de Matemáticas, Escuela Politécnica Superior de Algeciras Universidad de Cádiz, Algeciras, Spain

Tóm tắt

Given a connected simple graph $$G=(V(G),E(G))$$ , a set $$S\subseteq V(G)$$ is said to be a 2-metric generator for G if and only if for any pair of different vertices $$u,v\in V(G)$$ , there exist at least two vertices $$w_1,w_2\in S$$ such that $$d_G(u,w_i)\ne d_G(v,w_i)$$ , for every $$i\in \{1,2\}$$ , where $$d_G(x,y)$$ is the length of a shortest path between x and y. The minimum cardinality of a 2-metric generator is the 2-metric dimension of G, denoted by $$\dim _2(G)$$ . The metric $$d_{G,2}: V(G)\times V(G)\longmapsto {\mathbb {N}}\cup \{0\}$$ is defined as $$d_{G,2}(x,y)=\min \{d_G(x,y),2\}$$ . Now, a set $$S\subseteq V(G)$$ is a 2-adjacency generator for G, if for every two vertices $$x,y\in V(G)$$ there exist at least two vertices $$w_1,w_2\in S$$ , such that $$d_{G,2}(x,w_i)\ne d_{G,2}(y,w_i)$$ for every $$i\in \{1,2\}$$ . The minimum cardinality of a 2-adjacency generator is the 2-adjacency dimension of G, denoted by $${\mathrm {adim}}_2(G)$$ . In this article, we obtain closed formulae for the 2-metric dimension of the lexicographic product $$G\circ H$$ of two graphs G and H. Specifically, we show that $$\dim _2(G\circ H)=n\cdot {\mathrm {adim}}_2(H)+f(G,H),$$ where $$f(G,H)\ge 0$$ , and determine all the possible values of f(G, H).

Tài liệu tham khảo

Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953) Estrada-Moreno, A., Ramírez-Cruz, Y., Rodríguez-Velázquez, J.A.: On the adjacency dimension of graphs. Appl. Anal. Discrete Math. 10(1), 102–127 (2016) Estrada-Moreno, A., Rodríguez-Velázquez, J.A., Yero, I.G.: The \(k\)-metric dimension of a graph. Appl. Math. Inf. Sci. 9(6), 2829–2840 (2015) Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: The \(k\)-metric dimension of corona product graphs. Bull. Malays. Math. Sci. Soc. 39(1), 135–156 (2016) Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: The \(k\)-metric dimension of the lexicographic product of graphs. Discrete Math. 339(7), 1924–1934 (2016) Fernau, H., Rodríguez-Velázquez, J.A.: On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. arXiv:1309.2275 [math.CO] Fernau, H., Rodríguez-Velázquez, J.A.: Notions of metric dimension of corona products: Combinatorial and computational results, In: Computer Science—Theory and Applications, vol. 8476 of Lecture Notes in Computer Science, pp. 153–166. Springer International Publishing (2014) Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs, Discrete Mathematics and its Applications, 2nd edn. CRC Press, Boca Raton, FL (2011) Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976) Hernando, C., Mora, M., Slater, P.J., Wood, D.R.: Fault-tolerant metric dimension of graphs, In: Changat, M., Klavzar, S., Mulder, H.M., Vijayakumar, A. (eds.), Convexity in Discrete Structures, no. 5 in RMS Lecture Notes Series, pp. 81–85. Ramanujan Mathematical Society Ed. (2008) Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of graphs. Discrete Math. 312(22), 3349–3356 (2012) Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70(3), 217–229 (1996) Slater, P.J.: Leaves of trees. Congr. Numerantium 14, 549–559 (1975) Yero, I.G., Estrada-Moreno, A., Rodríguez-Velázquez, J.A.: Computing the \(k\)-metric dimension of graphs. arXiv:1401.0342 [math.CO]