Relationships Between the 2-Metric Dimension and the 2-Adjacency Dimension in the Lexicographic Product of Graphs
Tóm tắt
Given a connected simple graph
$$G=(V(G),E(G))$$
, a set
$$S\subseteq V(G)$$
is said to be a 2-metric generator for G if and only if for any pair of different vertices
$$u,v\in V(G)$$
, there exist at least two vertices
$$w_1,w_2\in S$$
such that
$$d_G(u,w_i)\ne d_G(v,w_i)$$
, for every
$$i\in \{1,2\}$$
, where
$$d_G(x,y)$$
is the length of a shortest path between x and y. The minimum cardinality of a 2-metric generator is the 2-metric dimension of G, denoted by
$$\dim _2(G)$$
. The metric
$$d_{G,2}: V(G)\times V(G)\longmapsto {\mathbb {N}}\cup \{0\}$$
is defined as
$$d_{G,2}(x,y)=\min \{d_G(x,y),2\}$$
. Now, a set
$$S\subseteq V(G)$$
is a 2-adjacency generator for G, if for every two vertices
$$x,y\in V(G)$$
there exist at least two vertices
$$w_1,w_2\in S$$
, such that
$$d_{G,2}(x,w_i)\ne d_{G,2}(y,w_i)$$
for every
$$i\in \{1,2\}$$
. The minimum cardinality of a 2-adjacency generator is the 2-adjacency dimension of G, denoted by
$${\mathrm {adim}}_2(G)$$
. In this article, we obtain closed formulae for the 2-metric dimension of the lexicographic product
$$G\circ H$$
of two graphs G and H. Specifically, we show that
$$\dim _2(G\circ H)=n\cdot {\mathrm {adim}}_2(H)+f(G,H),$$
where
$$f(G,H)\ge 0$$
, and determine all the possible values of f(G, H).
Tài liệu tham khảo
Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)
Estrada-Moreno, A., Ramírez-Cruz, Y., Rodríguez-Velázquez, J.A.: On the adjacency dimension of graphs. Appl. Anal. Discrete Math. 10(1), 102–127 (2016)
Estrada-Moreno, A., Rodríguez-Velázquez, J.A., Yero, I.G.: The \(k\)-metric dimension of a graph. Appl. Math. Inf. Sci. 9(6), 2829–2840 (2015)
Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: The \(k\)-metric dimension of corona product graphs. Bull. Malays. Math. Sci. Soc. 39(1), 135–156 (2016)
Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: The \(k\)-metric dimension of the lexicographic product of graphs. Discrete Math. 339(7), 1924–1934 (2016)
Fernau, H., Rodríguez-Velázquez, J.A.: On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. arXiv:1309.2275 [math.CO]
Fernau, H., Rodríguez-Velázquez, J.A.: Notions of metric dimension of corona products: Combinatorial and computational results, In: Computer Science—Theory and Applications, vol. 8476 of Lecture Notes in Computer Science, pp. 153–166. Springer International Publishing (2014)
Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs, Discrete Mathematics and its Applications, 2nd edn. CRC Press, Boca Raton, FL (2011)
Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)
Hernando, C., Mora, M., Slater, P.J., Wood, D.R.: Fault-tolerant metric dimension of graphs, In: Changat, M., Klavzar, S., Mulder, H.M., Vijayakumar, A. (eds.), Convexity in Discrete Structures, no. 5 in RMS Lecture Notes Series, pp. 81–85. Ramanujan Mathematical Society Ed. (2008)
Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of graphs. Discrete Math. 312(22), 3349–3356 (2012)
Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70(3), 217–229 (1996)
Slater, P.J.: Leaves of trees. Congr. Numerantium 14, 549–559 (1975)
Yero, I.G., Estrada-Moreno, A., Rodríguez-Velázquez, J.A.: Computing the \(k\)-metric dimension of graphs. arXiv:1401.0342 [math.CO]