ML-KNN: A lazy learning approach to multi-label learning

Pattern Recognition - Tập 40 - Trang 2038-2048 - 2007
Min-Ling Zhang1, Zhi-Hua Zhou1
1National Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

Tài liệu tham khảo

A. McCallum, Multi-label text classification with a mixture model trained by EM, in: Working Notes of the AAAI’99 Workshop on Text Learning, Orlando, FL, 1999. Schapire, 2000, Boostexter: a boosting-based system for text categorization, Mach. Learn., 39, 135, 10.1023/A:1007649029923 Elisseeff, 2002, A kernel method for multi-labelled classification, 681 Boutell, 2004, Learning multi-label scene classification, Pattern Recognition, 37, 1757, 10.1016/j.patcog.2004.03.009 A. Clare, R.D. King, Knowledge discovery in multi-label phenotype data, in: L.D. Raedt, A. Siebes (Eds.), Lecture Notes in Computer Science, vol. 2168, Springer, Berlin, 2001, pp. 42–53. F.D. Comité, R. Gilleron, M. Tommasi, Learning multi-label alternating decision tree from texts and data, in: P. Perner, A. Rosenfeld (Eds.), Lecture Notes in Computer Science, vol. 2734, Springer, Berlin, 2003, pp. 35–49. D.W. Aha, Special AI review issue on lazy learning, Artif. Intell. Review 11. N. Ueda, K. Saito, Parametric mixture models for multi-label text, in: S. Becker, S. Thrun, K. Obermayer (Eds.), Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge, MA, 2003, pp. 721–728. Sebastiani, 2002, Machine learning in automated text categorization, ACM Compu. Surv., 34, 1, 10.1145/505282.505283 Salton, 1991, Developments in automatic text retrieval, Science, 253, 974, 10.1126/science.253.5023.974 Gao, 2004, A MFoM learning approach to robust multiclass multi-label text categorization, 329 H. Kazawa, T. Izumitani, H. Taira, E. Maeda, Maximal margin labeling for multi-topic text categorization, in: L.K. Saul, Y. Weiss, L. Bottou (Eds.), Advances in Neural Information Processing Systems, vol. 17, MIT Press, Cambridge, MA, 2005, pp. 649–656. Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 55, 119, 10.1006/jcss.1997.1504 Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B, 39, 1 Freund, 1999, The alternating decision tree learning algorithm, 124 R.E. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions, in: Proceedings of the 11th Annual Conference on Computational Learning Theory, New York, 1998, pp. 80–91. Gao, 2003, A maximal figure-of-merit learning approach to text categorization, 174 Quinlan, 1993 R. Jin, Z. Ghahramani, Learning with multiple labels, in: S. Becker, S. Thrun, K. Obermayer (Eds.), Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge, MA, 2003, pp. 897–904. Pavlidis, 2001, Combining microarray expression data and phylogenetic profiles to learn functional categories using support vector machines, 242 Yang, 1997, A comparative study on feature selection in text categorization, 412 Dumais, 1998, Inductive learning algorithms and representation for text categorization, 148 Zhang, 2006, Multilabel neural networks with applications to functional genomics and text categorization, IEEE T. Knowl. Data En., 18, 1338, 10.1109/TKDE.2006.162