Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI

Michael D. Greicius1, Gaurav Srivastava1,2, Allan L. Reiss1,2, Vinod Menon1,2
1Departments of Neurology and Neurological Sciences, Psychiatry and Behavioral Sciences, and Electrical Engineering, Program in Neurosciences, and Stanford Brain Research Institute, Stanford University School of Medicine, Stanford, CA 94305-5719
2Psychiatry and Behavioral Sciences, and

Tóm tắt

Recent functional imaging studies have revealed coactivation in a distributed network of cortical regions that characterizes the resting state, or default mode, of the human brain. Among the brain regions implicated in this network, several, including the posterior cingulate cortex and inferior parietal lobes, have also shown decreased metabolism early in the course of Alzheimer's disease (AD). We reasoned that default-mode network activity might therefore be abnormal in AD. To test this hypothesis, we used independent component analysis to isolate the network in a group of 13 subjects with mild AD and in a group of 13 age-matched elderly controls as they performed a simple sensory-motor processing task. Three important findings are reported. Prominent coactivation of the hippocampus, detected in all groups, suggests that the default-mode network is closely involved with episodic memory processing. The AD group showed decreased resting-state activity in the posterior cingulate and hippocampus, suggesting that disrupted connectivity between these two regions accounts for the posterior cingulate hypometabolism commonly detected in positron emission tomography studies of early AD. Finally, a goodness-of-fit analysis applied at the individual subject level suggests that activity in the default-mode network may ultimately prove a sensitive and specific biomarker for incipient AD.

Từ khóa


Tài liệu tham khảo

10.1002/ana.410420114

10.1212/WNL.50.6.1563

10.1007/BF02988596

10.1056/NEJM199603213341202

10.1073/pnas.090106797

10.1073/pnas.061509598

10.1073/pnas.2235925100

10.1007/BF00308809

10.1093/brain/awf185

Vogt, B. A., Finch, D. M. & Olson, C. R. (1992) Cereb. Cortex 2, 435-443.1477524

10.1002/cne.903500402

10.1046/j.1460-9568.1999.00672.x

10.1002/cne.10243

10.1093/brain/122.8.1519

10.1093/cercor/6.4.571

10.1523/JNEUROSCI.20-22-08410.2000

10.1006/nimg.2001.0762

10.1073/pnas.98.2.676

10.1162/jocn.1997.9.5.648

10.1073/pnas.0135058100

10.1162/089892900564046

10.1212/WNL.43.11.2412-a

10.1006/nimg.1995.1007

10.1002/hbm.460030303

Talairach J. & Tournoux P. (1988) Co-Planar Stereotaxic Atlas of the Human Brain (Thieme Stuttgart).

10.1109/TMI.2003.822821

10.1073/pnas.95.3.803

Quigley, M. A., Haughton, V. M., Carew, J., Cordes, D., Moritz, C. H. & Meyerand, M. E. (2002) Am. J. Neuroradiol. 23, 49-58.11827875

10.1006/nimg.2001.0914

10.1002/hbm.10032

10.1006/nimg.2001.0921

Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., Quigley, M. A. & Meyerand, M. E. (2001) Am. J. Neuroradiol. 22, 1326-1333.11498421

10.1006/nimg.1996.0248

10.1073/pnas.071043098

10.1162/089892999563265

10.1002/(SICI)1098-1063(1999)9:1<54::AID-HIPO6>3.0.CO;2-O

10.1016/S0306-4522(01)00108-7

10.1016/S1053-8119(03)00002-8

10.1016/S0166-4328(01)00365-5

10.1212/WNL.34.7.939

10.1093/brain/110.6.1631

10.1016/S0197-4580(98)00022-0