Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals

Chemosphere - Tập 178 - Trang 65-72 - 2017
Uzochukwu C. Ugochukwu1, Claire I. Fialips2
1SHELL Centre for Environmental Management & Control, University of Nigeria, Enugu Campus, Enugu State, Nigeria
2Total SA, CSTJF, Avenue Larribau, 64018 Pau, France

Tài liệu tham khảo

Alexander, 1999 Armstrong, 2004, Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis, Environ. Health Persp, 112, 970, 10.1289/ehp.6895 Bergaya, 2006, Surface area and porosity, 965 Beveridge, 1985, Metal fixation by bacterial-cell walls, Can. J. Earth Sci., 22, 1893, 10.1139/e85-204 Binková, 2004, The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts, Mutat. Res. Fund. Mol. M., 547, 109, 10.1016/j.mrfmmm.2003.12.006 Biswas, 2015, Heavy metal-immobilising organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed contaminated soil, J. Hazard Mat., 298, 129, 10.1016/j.jhazmat.2015.05.009 Biswas, 2015, Bioremediation of PAHs and VOCs: advances in clay mineral-microbial interaction, Environ. Int., 85, 168, 10.1016/j.envint.2015.09.017 Biswas, 2017, Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: a 14C-tracer study, Environ. Pollut., 10.1016/j.envpol.2017.01.022 Borrok, 2004, The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces, Chem. Geol., 209, 107, 10.1016/j.chemgeo.2004.04.025 Borrok, 2005, A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings, Am. J. Sci., 305, 1, 10.2475/ajs.305.6-8.826 Cosultchi, 2005, Adsorption of crude oil on Na+-montmorillonite, Energ Fuel, 19, 1417, 10.1021/ef049825a Cowking, 1983, Structure and swelling of fibrous and granular saponitic clay from Orrock Quarry Fife, Scotland, Clay Min., 18, 49, 10.1180/claymin.1983.018.1.05 Dubikova, 2002, Experimental soil acidification, Appl. Geochem, 17, 245, 10.1016/S0883-2927(01)00081-6 Espana, 2016, Environmental applications of thermally modified and acid activated clay minerals: current status of the art, J. Environ. Technol. Innov. Galan, 1999, Effects of acid mine drainage on clay minerals suspended in the Tinto River (Rio Tinto, Spain): an experimental approach, Clay Min., 34, 99, 10.1180/000985599546118 Hamdi, 2007, Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions, Soil Biol. Biochem., 39, 1926, 10.1016/j.soilbio.2007.02.008 Jiang, 2004, Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy, Langmuir, 20, 11433, 10.1021/la049043+ Kelly, 2002, X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions, Geochm Cosmochm Ac, 66, 3855, 10.1016/S0016-7037(02)00947-X Komadel, 2003, Chemically modified smectites, Clay Min., 38, 127, 10.1180/0009855033810083 Lunsdorf, 2000, Clay hutches: a novel interaction between bacteria and clay minerals, Environ. Microbiol., 2, 161, 10.1046/j.1462-2920.2000.00086.x Mandal, 2016, Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination, Sci. total Environ., 550, 611, 10.1016/j.scitotenv.2016.01.164 Murray, 2000, Traditional and new applications for kaolin, smectite and palygorskite: a general overview, Appl. Clay Sci., 17, 207, 10.1016/S0169-1317(00)00016-8 Nacci, 2002, Effects of benzo[a]pyrene exposure on a fish population resistant to the toxic effects of dioxin-like compounds, Aquat. Toxicol., 57, 203, 10.1016/S0166-445X(01)00196-5 Pernyeszi, 1998, Asphaltene adsorption on clays and crude oil reservoir rocks, Colloid Surf., 137, 373, 10.1016/S0927-7757(98)00214-3 Rusmin, 2016, Structural, electrokinetic and surface properties of activated palygorskite for environmental application, Appl. Clay Sci., 134, 95, 10.1016/j.clay.2016.07.012 Singh, A.K., Sherry, A., Gray, N.D., Jones, M.D., Rolling, W.F.M., Head, I.M., 2009. How specific microbial communities benefit oil industry: dynamics of Alcanivorax spp. in oil contaminated intertidal beach sediments undergoing bioremediation. In: Proceedings of International Symposium. Applied Microbiology and Molecular Biology in Oilfield Systems, pp. 199e210. Tazaki, 2008, Life in oil: hydrocarbon-degrading bacterial mineralization in oil spill-polluted marine environment, Front. Mat. Sci. China, 2, 120, 10.1007/s11706-008-0022-8 Thavasi, 2007, Effect of salinity, temperature, pH and crude oil concentration on biodegradation of crude oil by Pseudomonas aeruginosa, J. Biol. Environ. Sci., 1, 51 Theocharis, 1988, Enhancement of Lewis acidity in layer aluminosilicates, J. Chem. Soc. Faraday T, 84, 1509, 10.1039/f19888401509 Tuvikene, 1995, Response of fish to polycyclic aromatic hydrocarbons (PAHs), Ann. Zool. Fenn., 32, 295 Ugochukwu, 2013, Biodegradation of crude oil saturated fraction supported on clays, Biodegradation, 24 Ugochukwu, 2014, Effect of acid activated clay minerals on biodegradation of crude oil hydrocarbons, Int Biodeter Biodegr, 88, 185, 10.1016/j.ibiod.2013.10.018 Ugochukwu, 2014, Effect of interlayer cations of montmorillonites on the biodegradation and adsorption of crude oil polycyclic aromatic compounds, J. Environ. Manag., 142, 30 Van loosdrecht, 1989, Bacterial adhesion: a physicochemical approach, Microb. Ecol., 17, 1, 10.1007/BF02025589 Van loosdrecht, 1990, Influence of interfaces on microbial activity, Mirobiol Mol. Biol. Rev., 54, 75 Warr, 2009, Clay mineral-enhanced bioremediation of marine oil pollution, Appl. Clay Sci., 46, 337, 10.1016/j.clay.2009.09.012 Warr, 2013, Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints, Biotechnol. Res. Int., 2013, 10.1155/2013/704806 Zhang, 2015, Distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in the food web of Nansi Lake, China, Environ. Monit. Assess., 187, 173, 10.1007/s10661-015-4362-4 Zhu, 2004, Cation-π Bonding: a new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces, J. Environ. Qual., 33, 1322, 10.2134/jeq2004.1322