“More is Different:” Synergistic Effect and Structural Engineering in Double‐Atom Catalysts

Advanced Functional Materials - Tập 31 Số 3 - 2021
Yiran Ying1, Xin Luo2, Jinli Qiao3, Haitao Huang1
1Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
2State Key Laboratory of Optoelectronic Materials and Technologies, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, P. R. China
3State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620 P. R. China

Tóm tắt

Abstract

Double‐atom catalysts (DACs) have emerged as a novel frontier in heterogeneous catalysis because the synergistic effect between adjacent active sites can promote their catalytic activity while maintaining high atomic utilization efficiency, good selectivity, and high stability originating from the atomically dispersed nature. In this review, the recent progress in both experimental and theoretical research on DACs for various catalytic reactions is focused. Specifically, the central tasks in the design of DACs—manipulating the synergistic effect and engineering atomic and electronic structures of catalysts—are systematically reviewed, along with the prevailing experimental, characterization, and computational modeling approaches. Furthermore, the practical applications of DACs in water splitting, oxygen reduction reaction, nitrogen reduction reaction, and carbon dioxide reduction reaction are addressed. Finally, the future challenges for DACs are summarized and an outlook on the further investigations of DACs toward heterogeneous catalysis in high‐performance energy and environmental applications is provided.

Từ khóa


Tài liệu tham khảo

Arico A. S., 2011, Materials for Sustainable Energy: A Collection of Peer‐Reviewed Research and Review Articles from Nature Publishing Group, 148

Dudley B., 2019, BP Statistical Review

10.1038/nature11475

10.1038/nmat4738

10.1016/j.matt.2019.11.014

10.1039/C3CS60468C

10.1039/C4CS00470A

10.1002/anie.201407031

10.1039/C4CS00448E

10.1039/C9CS00869A

10.1039/C6CS00328A

10.1002/smll.201200861

10.1021/cr5003563

10.1021/acs.chemrev.5b00462

10.1039/C9EE01722D

10.1038/s41929-018-0092-7

10.1002/aenm.201800369

10.1039/C7EE02220D

10.1039/C3CS60323G

10.1002/adma.201701784

10.1038/nchem.1095

10.1021/ar300361m

10.1021/acscatal.6b01534

10.1038/s41570-018-0010-1

10.1016/j.joule.2018.06.019

10.1038/s41929-018-0090-9

10.1038/ncomms9668

10.1038/s41929-017-0008-y

10.1038/s41467-018-03896-4

10.1002/anie.201702473

10.1021/jacs.7b06514

10.1002/adma.201803498

10.1002/anie.201811728

10.1038/s41560-017-0078-8

10.1021/jacs.9b13349

10.1021/jacs.9b05268

10.1021/nl500682j

10.1126/science.177.4047.393

10.1002/aenm.201902844

Ji S., 2020, Chem. Rev.

10.1021/ar300229c

10.1038/s41467-017-01259-z

10.1038/s41467-019-12887-y

10.1021/jacs.8b04647

10.1002/anie.201902107

10.1038/s41467-018-04845-x

10.1021/jacs.7b10385

10.1002/anie.201811126

10.1002/anie.201901575

10.1016/j.chempr.2019.07.020

10.1021/jacs.7b05018

10.1016/S0021-9517(02)00113-6

10.1017/S1431927605050361

10.1073/pnas.1722137115

10.1039/c2cs35174a

10.1039/C6CS00230G

10.1021/acs.chemrev.7b00689

10.1126/science.aad4998

10.1103/PhysRev.136.B864

10.1103/PhysRev.140.A1133

10.1038/nchem.121

10.1021/acs.chemrev.7b00488

10.1021/jp047349j

10.1021/ja405997s

10.1021/jacs.7b05213

10.1021/ja511559d

10.1016/j.jcat.2014.12.033

10.1021/jp503756g

10.1038/nchem.2226

10.1002/cssc.201500322

10.1002/aenm.201600463

10.1021/jp202489s

10.1002/9781118892114

10.1038/nenergy.2016.130

10.1038/nenergy.2017.127

10.1021/jacs.9b03811

10.1002/advs.201901614

10.1038/s41929-018-0063-z

10.1021/acscatal.9b02778

10.1039/C9SC05236D

10.1021/jp4100608

10.1002/wcms.1372

10.1021/acs.jpclett.9b03392

10.1021/acscatal.5b01165

10.1039/D0TA00033G

10.1039/C9TA02356A

10.1002/inf2.12094

10.1039/C6EE02697D

10.1021/acs.chemmater.8b03272

10.1038/s41524-019-0177-0

10.1038/s41929-018-0142-1

10.1021/acs.chemmater.9b03686

10.1002/aenm.201903949

10.1002/solr.202000027

10.1002/adma.201803625

Lide D. R., 2004, CRC Handbook of Chemistry and Physics

10.1002/adma.201808167

10.1039/B800489G

10.1021/acs.jpcc.9b09593

10.1002/anie.201709803

10.1126/sciadv.aba6586

10.1016/j.apcatb.2018.08.074

10.1002/adma.201905622

10.1016/j.nanoen.2020.104597

10.1002/aenm.201701345

10.1021/jacs.5b10484

10.1002/anie.202007221

10.1021/jacs.6b13100

10.1021/jacs.8b13701

10.1021/acscatal.9b05445

10.1039/C8TA11626A

10.1021/acs.jpcc.9b08171

10.1039/D0TA01399D

Steele B. C., 2011, Materials For Sustainable Energy: A Collection of Peer‐Reviewed Research and Review Articles from Nature Publishing Group, 224

10.1039/C5EE02474A

10.1002/aenm.201903815

10.1021/ja500432h

10.1039/C8CC00988K

10.1016/j.nanoen.2018.02.025

10.1002/anie.201810175

10.1039/C9EE00162J

10.1039/C9TA12207A

10.1039/C9TA12516G

10.1039/C9EE04040D

10.1126/science.1168049

10.1002/cssc.201700864

10.1039/C8EE02656D

10.1021/jacs.9b08362

10.1016/j.nanoen.2019.01.011

10.1021/acs.jpclett.9b03771

10.1002/anie.201509241

10.1038/ncomms10922

10.1021/acs.chemrev.6b00558

10.1021/acs.jpclett.6b00096

10.1038/srep09286

10.1039/C9TA08616A

10.1021/acssuschemeng.9b04058

10.1016/j.jechem.2019.08.009

10.1016/j.jcis.2020.02.034

10.1021/acs.jpcc.0c01045

10.1039/C9TA08661G

10.1002/smtd.201800291

10.1002/smtd.201800480

10.1021/acscatal.9b02178

Smil V., 2004, Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production

10.1126/science.1136674

10.1016/j.jpowsour.2008.02.097

Bernhardt D., 2019, US Geological Survey

10.1016/j.joule.2018.04.014

10.1039/C4CS00085D

10.1002/adfm.201803309

10.1039/C8TA11605A

10.1021/jacs.6b04778

10.1039/C1CP22271F

10.1002/smtd.201800376

10.1021/jacs.8b07472

10.1021/acscatal.8b05061

10.1039/C9TA09776G

10.1039/C9TA12345H

10.1039/D0MA00348D

10.1038/s41467-019-10888-5

10.1039/C9TA07845B

10.1021/acs.jpcc.0c00486

10.1021/acs.jpcc.9b05250

10.1016/j.apsusc.2019.144943

10.1002/cphc.201900279

10.1039/C8TA07683A

10.1088/1361-6528/ab1d01

10.1002/eom2.12014

10.1016/j.electacta.2020.135667

10.1039/C9TA13599E

10.1016/j.jcat.2020.05.009

10.1002/cssc.202000964

10.1039/C9NR06469A

10.3389/fchem.2020.00437

10.1126/science.aaq1684

10.1021/jacs.8b13165

10.1002/anie.201802675

10.1021/cr4002758

10.1002/anie.201912751

10.1002/adma.201504766

10.1021/jacs.7b09074

10.1039/C7EE03245E

10.1021/cs5012298

10.1021/jz201461p

10.1002/wcms.1416

10.1038/s41565-018-0089-z

10.1038/s41557-018-0201-x

10.1038/s41929-019-0308-5

10.1002/adma.201903470

10.1016/j.apcatb.2020.118747

10.1021/acs.jpcc.7b00317

10.1021/acs.jpcc.8b06494

10.1021/acssuschemeng.9b05042

10.1016/j.isci.2020.101051

10.1016/j.jcou.2019.12.025

10.1039/C8NR03394C

10.1039/C9SC00658C

10.1021/jacs.8b10910

10.1016/j.ijhydene.2018.02.129

10.1021/cs500223z

10.1016/j.mcat.2019.03.024

10.1039/C9TA13192B

10.1002/anie.201801957

10.1021/cs200418w

10.1038/s41929-018-0028-2

10.1038/s41467-019-09188-9

10.1038/s41586-018-0869-5

10.1021/jacs.9b06808

10.1021/jacs.9b09232