Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat

Protoplasma - Tập 251 - Trang 1455-1470 - 2014
Fabienne Delporte1, Anna Pretova2,3, Patrick du Jardin4, Bernard Watillon1
1Department of Life Sciences, Bioengineering Unit, Walloon Agricultural Research Centre (CRA-W), Gembloux, Belgium
2Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
3Department of Biology- Faculty of Natural Sciences, University of SS Cyril and Methodius in Trnava, Trnava, Slovak Republic
4Gembloux Agro-Bio Tech, Plant Biology Unit, University of Liège (ULg), Gembloux, Belgium

Tóm tắt

Cellular totipotency is one of the basic principles of plant biotechnology. Currently, the success of the procedure used to produce transgenic plants is directly proportional to the successful insertion of foreign DNA into the genome of suitable target tissue/cells that are able to regenerate plants. The mature embryo (ME) is increasingly recognized as a valuable explant for developing regenerable cell lines in wheat biotechnology. We have previously developed a regeneration procedure based on fragmented ME in vitro culture. Before we can use this regeneration system as a model for molecular studies of the morphogenic pathway induced in vitro and investigate the functional links between regenerative capacity and transformation receptiveness, some questions need to be answered. Plant regeneration from cultured tissues is genetically controlled. Factors such as age/degree of differentiation and physiological conditions affect the response of explants to culture conditions. Plant regeneration in culture can be achieved through embryogenesis or organogenesis. In this paper, the suitability of ME tissues for tissue culture and the chronological series of morphological data observed at the macroscopic level are documented. Genetic variability at each step of the regeneration process was evaluated through a varietal comparison of several elite wheat cultivars. A detailed histological analysis of the chronological sequence of morphological events during ontogeny was conducted. Compared with cultures of immature zygotic embryos, we found that the embryogenic pathway occurs slightly earlier and is of a different origin in our model. Cytological, physiological, and some biochemical aspects of somatic embryo formation in wheat ME culture are discussed.

Tài liệu tham khảo

Arias RS, Filichkin SA, Strauss SH (2006) Divide and conquer: development and cell cycle genes in plant transformation. Trends Biotechnol 24:267–273 Baíza AM, Sànchez-de-Jiménez E (1989) Effect of the auxin, 2-(2-methyl-4-chloro-phenoxy)propionic acid, on cell cycle regulation in maize embryonic tissues. Physiol Plant 5(2):261–266 Bartók T, Sági F (1990) A new, endosperm-supported callus induction method for wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 22(1):37–41. doi:10.1007/bf00043696 Battal A (2010) Optimization of mature embryo based regeneration and genetic transformation of Turkish wheat cultivars. Thesis. Graduate School of Natural and Applied Sciences, Middle East Technical University Bennici A, d’Amato F (1978) In vitro regeneration of durum wheat plants, 1. Zeitschrift fuer Pflanzenzuechtung 81:305–311 Bennici A, Caffaro L, Dameri R, Gastaldo P, Profumo P (1988) Callus formation and plantlet regeneration from immature Triticum durum Desf. embryos. Euphytica 39(3):255–263 Bethke PC, Schuurink R, Jones RL (1997) Hormonal signalling in cereal aleurone. J Exp Bot 48(7):1337–1356 Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066 Bhaskaran S, Smith RH (1990) Regeneration in cereal tissue culture: a review. Crop Sci 30(6):1328–1337. doi:10.2135/cropsci1990.0011183X003000060034x Bhojwani SS, Razdan MK (1986) Plant tissue culture: theory and practice. Access Online via Elsevier Bi RM, Kou M, Chen LG, Mao SR, Wang HG (2007) Plant regeneration through callus initiation from mature embryo of Triticum. Plant Breed 126(1):9–12 Bolibok H, Rakoczy-Trojanowska M (2006) Genetic mapping of QTLs for tissue-culture response in plants. Euphytica 149(1–2):73–83 Chauchan H, Desai SA, Khurana P (2007) Comparative analysis of the differential regeneration response of various genotypes of Triticum aestivum, Triticum durum and Triticum dicoccum. Plant Cell Tissue Organ Cult 91:191–199 Chlyah H, Hsaine M, Karim R, Chlyah A (1990) Improvement of somatic embryogenesis in wheat by segmentation of cultured embryos. In: Bajaj YPS (ed) Wheat, vol 13, Biotechnology in agriculture and forestry. Springer, Berlin, pp 88–97. doi:10.1007/978-3-662-10933-5_5 Coskun Y, Duran RE, Savaskan C, Demirci T, Hakan MT (2013) Efficient plant regeneration with arabinogalactan-proteins on various ploidy levels of cereals. J Integr Agric 12(3):420–425 de Almeida M, de Almeida CV, Graner EM, Brondani GE, de Abreu-Tarazi MF (2012) Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep 31(8):1495–1515 del Pozo JC, Lopez-Matas MA, Ramirez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiol Plant 123(2):173–183 Delporte F, Mostade O, Jacquemin JM (2001) Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell Tissue Organ Cult 67:73–80 Delporte F, Li S, Jacquemin JM (2005) Calluses initiated from thin mature embryo fragments are suitable targets for wheat transformation as assessed by long-term GUS expression studies. Plant Cell Tissue Organ Cult 80:139–149 Delporte F, Muhovski Y, Pretová A, Watillon B (2013) Analysis of expression profiles of selected genes associated with the regenerative property and the receptivity to gene transfer during somatic embryogenesis in Triticum aestivum L. Mol Biol Rep 40(10):5883–5906 Ding L, Li S, Gao J, Wang Y, Yang G, He G (2009) Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep 36(1):29–36. doi:10.1007/s11033-007-9148-5 Eapen S, George L (1990) Influence of phytohormones, carbohydrates, aminoacids, growth supplements and antibiotics on somatic embryogenesis and plant differentiation in finger millet. Plant Cell Tissue Organ Cult 22(2):87–93. doi:10.1007/bf00043683 Eapen S, Rao P (1985) Factors controlling callus initiation, growth and plant regeneration in breadwheat (Triticum aestivum L). Proc Plant Sci 94(1):33–40 Elhiti M, Stasolla C (2011) The use of zygotic embryos as explants for in vitro propagation: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture, vol 710. Methods in molecular biology. Humana Press, pp 229-255. doi:10.1007/978-1-61737-988-8_17 Elmeer KES (2013) Factors regulating somatic embryogenesis in plants. In: Aslam J, Srivastava PS, Sharma MP (eds) Somatic Embryogenesis and Gene Expression. Narosa Publishing House, New Delhi, pp 56-81. Eudes F, Acharya S, Laroche A, Selinger LB, Cheng K-J (2003) A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tissue Organ Cult 73:147–157 Fehér A (2006) Why somatic plant cells Start to form embryos? In: Mujib A, Šamaj J (eds) Somatic embryogenesis, vol 2, Plant cell monographs. Springer, Berlin, pp 85–101. doi:10.1007/7089_019 Fehér A (2008) The initiation phase of somatic embryogenesis: what we know and what we don't. Acta Biologica Szegediensis 52(1):53–56 Fernandez S, Michaux-Ferriere N, Coumans M (1999) The embryogenic response of immature embryo cultures of durum wheat (Triticum durum Desf.): Histology and improvement by AgNO3. Plant Growth Regul 28:147–155 Filippov M, Miroshnichenko D, Vernikovskaya D, Dolgov S (2006) The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat. Plant Cell Tissue Organ Cult 84:213–222 Finer JJ (2010) Plant nuclear transformation, vol 64, Genetic modification of plants. Springer, Berlin Fortes AM, Pais MS (2000) Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content. Am J Bot 87:971–979 Gliwicka M, Nowak K, Cieśla E, Gaj M (2012) Expression of seed storage product genes (CRA1 and OLEO4) in embryogenic cultures of somatic tissues of Arabidopsis. Plant Cell Tissue Organ Cult 109(2):235–245. doi:10.1007/s11240-011-0089-2 Gong H, Jiao Y, Hu W-W, Pua E-C (2005) Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol Biol 57(1):53–66 Grafi G, Chalifa-Caspi V, Nagar T, Plaschkes I, Barak S, Ransbotyn V (2011) Plant response to stress meets dedifferentiation, vol 233, Planta. Springer, Berlin Gutierrez C, Ramirez-Parra E, Castellano MM, Del Pozo JC (2002) G(1) to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol 5:480–486 He D, Yang Y, Bertram J, Scott K (1990) The histological development of the regenerative tissue derived from cultured immature embryos of wheat (Triticum aestivum L.). Plant Sci 68(1):103–111 Heyser JW, Nabors MW, MacKinnon C, Dykes TA, Demott KJ, Kautzman DC, Mujeeb-Kazi A (1984) Long-term, high-frequency plant regeneration and the induction of somatic embryogenesis in callus cultures of wheat (Triticum aestivum L.). Z Pflanzenzüchtung 94:218–233 Hicks G (1994) Shoot induction and organogenesis in vitro: a developmental perspective. Vitro Cell Dev Biol Plant 30(1):10–15 Ho WJ, Vasil IK (1983) Somatic embryogenesis in sugar cane (Saccharum officinarum L.): growth and plant regeneration from embryogenic cell suspension cultures. Ann Bot 51:719–726 Jeong D-H, An S, Kang H-G, Moon S, Han J-J, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130(4):1636–1644. doi:10.1104/pp. 014357 Jia H, Yi D, Yu J, Xue S, Zhang C, Zhang Z, Zhang L, Ma Z, Xiang Y (2007) Mapping QTLs for tissue culture response of mature wheat embryos. Mol Cells 23(3):323–330 Jia H, Yu J, Yi D, Cheng Y, Xu W, Zhang L, Ma Z (2009) Chromosomal intervals responsible for tissue culture response of wheat immature embryos. Plant Cell Tissue Organ Cult 97(2):159–165 Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223 Konieczny R, Czaplicki A, Golczyk H, Przywara L (2003) Two pathways of plant regeneration in wheat anther culture. Plant Cell Tissue Organ Cult 73(2):177–187 Kothar S, Varshney A (1998) Morphogenesis in long-term maintained immature embryo-derived callus of wheat (Triticum aestivum L)—histological evidence for both somatic embryogenesis and organogenesis. J Plant Biochem Biotechnol 7(2):93–98 Kraut M, Wójcikowska B, Ledwoń A, Gaj MD (2011) Immature zygotic embryo cultures of Arabidopsis. A model system for molecular studies on morphogenic pathways induced In vitro. Acta Biol Cracov Ser Bot 53(2):59 Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15(4):281–307 Lee S, Jeon J-S, Jung K-H, An G (1999) Binary vectors for efficient transformation of rice. J Plant Biol 42(4):310–316. doi:10.1007/bf03030346 Magnusson I, Bornmann CH (1985) Anatomical observations on somatic embryogenesis from scutellar tissue of immature zygotic embryos of Triticum aestivum. Physiol Plant 63:137–145 Martin AB, Cuadrado Y, Guerra H, Gallego P, Hita O, Martin L, Dorado A, Villalobos N (2000) Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant Sci 154:143–151 Miroshnichenko D, Filippov M, Dolgov S (2009) Effects of daminozide on somatic embryogenesis from immature and mature embryos of wheat. AJCS 3(2):83–94 Miroshnichenko D, Poroshin G, Dolgov S (2011) Genetic transformation of wheat using mature seed tissues. Appl Biochem Microbiol 47(8):767–775 Miroshnichenko DN, Filippov MV, Dolgov SV (2013) Medium optimization for efficient somatic embryogenesis and in vitro plant regeneration of spring common wheat varieties. Russ Agric Sci 39(1):24–28. doi:10.3103/s1068367413010175 Moghaieb RE, El-Arabi NI, Momtaz OA, Youssef SS, Soliman MH (2010) Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes. GM Crops 1(2):87–93 Murín R, Mészáros K, Nemeček P, Kuna R, Faragó J (2012) Regeneration of immature and mature embryos from diverse sets of wheat genotypes using media containing different auxins. Acta Agron Hung 60(2):97–108 Nakamura H, Hakata M, Amano K, Miyao A, Toki N, Kajikawa M, Pang J, Higashi N, Ando S, Toki S, Fujita M, Enju A, Seki M, Nakazawa M, Ichikawa T, Shinozaki K, Matsui M, Nagamura Y, Hirochika H, Ichikawa H (2007) A genome-wide gain-of-function analysis of rice genes using the FOX-hunting system, vol 65, Plant molecular biology. Springer, Netherlands Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult 90:1–8 Neelakandan A, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31(4):597–620. doi:10.1007/s00299-011-1202-z Nowak K, Wojcikowska B, Szyrajew K, Gaj MD (2012) Evaluation of different embryogenic systems for production of true somatic embryos in Arabidopsis. Biol Plant 56(3):401–408. doi:10.1007/s10535-012-0063-9 Oka S, Saito N, Kawaguchi H (1995) Histological observations on initiation and morphogenesis in immature and mature embryo derived callus of barley (Hordeum vulgare L.). Ann Bot 76(5):487–492. doi:10.1006/anbo.1995.1124 Olszewski N, T-p S, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14(90001):S61–S80 Ortiz JPA, Fama G, Vallejos RH, De Halac IN (1996) Cytodifferentiation and cell organization in the somatic embryogenesis of wheat (Triticum aestivum L). Biocell 20:61–66 Ozbay A, Özgen M (2010) Is heterosis noticeable in the callus response of winter durum wheat F1 hybrids? Biol Plant 54(4):769–772 Ozias-Akins P, Vasil IK (1982) Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): evidence for somatic embryogenesis. Protoplasma 110(2):95–105 Ozias-Akins P, Vasil I (1983a) Improved efficiency and normalization of somatic embryogenesis in Triticum aestivum (wheat). Protoplasma 117(1):40–44. doi:10.1007/bf01281782 Ozias-Akins P, Vasil IK (1983b) Callus induction and growth from the mature embryo of Triticum aestivum L. (wheat). Protoplasma 115:104–113 Parmar S, Sainger M, Chaudhary D, Jaiwal P (2012) Plant regeneration from mature embryo of commercial Indian bread wheat (Triticum aestivum L.) cultivars. Physiol Mol Biol Plants 18(2):177–183. doi:10.1007/s12298-012-0101-2 Phillips GC (2004) In vitro morphogenesis in plants-recent advances. Vitro Cell Dev Biol Plant 40(4):342–345 Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–105. doi:10.1016/j.tplants.2007.01.004 Rashid U, Ali S, Ali GM, Ayub N, Masood MS (2009) Establishment of an efficient callus induction and plant regeneration system in Pakistani wheat (Triticum aestivum) cultivars. Electron J Biotechnol 12(3):4–5 Ren J-P, Wang X-G, Yin J (2010) Dicamba and sugar effects on callus induction and plant regeneration from mature embryo culture of wheat. Agric Sci China 9(1):31–37 Saika H, Toki S (2009) Towards a highly efficient gene targeting system in higher plants. JARQ 43(2):81–85 Saika H, Toki S (2010) Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep 29(12):1351–1364. doi:10.1007/s00299-010-0921-x Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S (2011) Application of gene targeting to designed mutation breeding of high-tryptophan rice. Plant Physiol 156(3):1269–1277. doi:10.1104/pp. 111.175778 Salaj J, Petrovská B, Obert B, Pret'ová A (2005) Histological study of embryo-like structures initiated from hypocotyl segments of flax (Linum usitatissimum L.). Plant Cell Rep 24(10):590–595 Sallaud C, Gay C, Larmande P, Bès M, Piffanelli P, Piégu B, Droc G, Regad F, Bourgeois E, Meynard D, Périn C, Sabau X, Ghesquière A, Glaszmann JC, Delseny M, Guiderdoni E (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39(3):450–464 Schulze J (2007) Improvements in cereal tissue culture by thidiazuron: a review. Fruit Veg Cereal Sci Biotechnol 1:64–79 Shewry PR, Jones HD (2005) Transgenic wheat: where do we stand after the first 12 years? Ann Appl Biol 147:1–14 Shrawat AK, Good AG (2010) A high-throughput Agrobacterium tumefaciens-mediated transformation system for molecular breeding and functional genomics of rice (Oryza sativa L.). Plant Biotechnol 27(1):47–58 Singla B, Tyagi AK, Khurana JP, Khurana P (2007) Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol 65(5):677–692 Su N, He K, Jiao Y, Chen C, Zhou J, Li L, Bai S, Li X, Deng XW (2007) Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. Plant Mol Biol 63(3):337–349 Tahir M, Waraich E, Stasolla C (2011) Genetic transformation protocols using zygotic embryos as explants: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture, vol 710. Methods in molecular biology. Humana Press, pp 309-326. doi:10.1007/978-1-61737-988-8_21 Tang Z-X, Ren Z-L, Wu F, Fu S-L, Wang X-X, Zhang H-Q (2006) The selection of transgenic recipients from new elite wheat cultivars and study on its plant regeneration system. Agric Sci China 5(6):417–424 Terada R, Asao H, Iida S (2004) A large-scale Agrobacterium-mediated transformation procedure with a strong positive-negative selection for gene targeting in rice (Oryza sativa L.). Plant Cell Rep 22(9):653–659 Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47(6):969–976. doi:10.1111/j.1365-313X.2006.02836.x Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, van Kammen A, deVries SC (1994) Description of somatic-embryo forming single cells in carrot suspension cultures employing video cell tracking. Planta 194:565–572 Tyburski J, Tretyn A (2010) Ascorbate and glutathione in organogenesis, regeneration and differentiation in plant in vitro cultures. In: Nasar A, Chan M-T, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Berlin, pp 55–90 Vasil IK (1988) Progress in the regeneration and genetic manipulation of cereal crops. Biotechnology 6:397–402 Vasil IK (2005) The story of transgenic cereals: the challenge, the debate, and the solution—a historical perspective. In Vitro Cell Dev Biol Plant 41:577–583 Vasil I (2007) Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Rep 26(8):1133–1154. doi:10.1007/s00299-007-0338-3 Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440 von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249 Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462 Wu G, Shao HB, Chu LY, Cai JW (2007) Insights into molecular mechanisms of mutual effect between plants and the environment. A review. Agron Sustain Dev 27:69–78 Xia L, Ma Y, He Y, Jones HD (2012) GM wheat development in China: current status and challenges to commercialization. J Exp Bot 63(5):1785–1790. doi:10.1093/jxb/err342 Yang Y, Peng H, Huang H, Wu J, Jia S, Huang D, Lu T (2004) Large-scale production of enhancer trapping lines for rice functional genomics. Plant Sci 167(2):281–288 Yang Y, Li Y, Wu C (2013) Genomic resources for functional analyses of the rice genome. Curr Opin Plant Biol 16(2):157–163. doi:10.1016/j.pbi.2013.03.010 Yaseen M, Ahmad T, Sablok G, Standardi A, Hafiz IA (2013) Review: role of carbon sources for in vitro plant growth and development. Mol Biol Rep 40(4):2837-2849 Yin G-X, Wang Y-L, She M-Y, Du L-P, Xu H-J, Ma J-X, Ye X-G (2011) Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agric Sci China 10(1):9–17 Yu Y, Wang J, Zhu ML, Wei ZM (2008) Optimization of mature embryo–based high frequency callus induction and plant regeneration from elite wheat cultivars grown in China. Plant Breed 127(3):249–255 Zale JM, Borchardt-Wier H, Kidwell KK, Steber CM (2004) Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell Tissue Organ Cult 76:277–281