Oncogenic KRas mobility in the membrane and signaling response
Tóm tắt
Từ khóa
Tài liệu tham khảo
Waters, 2017, Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies, Sci. Signal, 10, 10.1126/scisignal.aao3332
Holderfield, 2017, Efforts to develop KRAS inhibitors, Cold Spring Harb. Perspect. Med.
Lu, 2016, Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view, Chem. Soc. Rev., 45, 4929, 10.1039/C5CS00911A
McCormick, 2015, The potential of targeting Ras proteins in lung cancer, Expert Opin. Ther. Targets, 19, 451, 10.1517/14728222.2014.1000304
Zeng, 2017, Potent and selective covalent quinazoline inhibitors of KRAS G12C, Cell Chem. Biol., 24, 1005, 10.1016/j.chembiol.2017.06.017
Lu, 2017, KRAS G12C drug development: discrimination between switch II pocket configurations using hydrogen/Deuterium-exchange mass spectrometry, Structure, 25, 1442, 10.1016/j.str.2017.07.003
Lu, 2016, The structural basis of oncogenic mutations G12 G13 and Q61 in small GTPase K-Ras4B, Sci. Rep., 6, 21949, 10.1038/srep21949
Nussinov, 2018, Oncogenic ras isoforms signaling specificity at the membrane, Cancer Res., 78, 593, 10.1158/0008-5472.CAN-17-2727
Chavan, 2015, Plasma membrane regulates Ras signaling networks, Cell. Logist., 5, e1136374, 10.1080/21592799.2015.1136374
Chen, 2016, Ras dimer formation as a new signaling mechanism and potential cancer therapeutic target, Mini Rev. Med. Chem., 16, 391, 10.2174/1389557515666151001152212
Jang, 2016, Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers, Biochem. J., 473, 1719, 10.1042/BCJ20160031
Li, 2018, Raf-1 cysteine-rich domain increases the affinity of K-Ras/Raf at the membrane, promoting MAPK signaling, Structure, 26, 513, 10.1016/j.str.2018.01.011
Banerjee, 2016, The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding, Curr. Opin. Struct. Biol., 36, 10, 10.1016/j.sbi.2015.11.010
Jang, 2016, The higher level of complexity of K-Ras4B activation at the membrane, FASEB J., 30, 1643, 10.1096/fj.15-279091
Kapoor, 2012, The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction, Eur. Biophys. J., 41, 801, 10.1007/s00249-012-0841-5
Nussinov, 2016, A new view of ras isoforms in cancers, Cancer Res., 76, 18, 10.1158/0008-5472.CAN-15-1536
Li, 2017, Computational modeling reveals that signaling lipids modulate the orientation of K-Ras4A at the membrane reflecting protein topology, Structure, 25, 679, 10.1016/j.str.2017.02.007
Tsai, 2015, K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif, Proc. Natl. Acad. Sci. U. S. A., 112, 779, 10.1073/pnas.1412811112
Sarkar-Banerjee, 2017, Spatiotemporal analysis of K-Ras plasma membrane interactions reveals multiple high order homo-oligomeric complexes, J. Am. Chem. Soc., 139, 13466, 10.1021/jacs.7b06292
Nussinov, 2018, Is nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild-type KRas can inhibit its oncogenic variant?, Semin. Cancer Biol.
Schmick, 2014, KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport, Cell, 157, 459, 10.1016/j.cell.2014.02.051
Weise, 2012, Dissociation of the K-Ras4B/PDEdelta complex upon contact with lipid membranes: membrane delivery instead of extraction, J. Am. Chem. Soc., 134, 11503, 10.1021/ja305518h
Schaaf, 2009, Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate, Biophys. J., 97, 1206, 10.1016/j.bpj.2009.05.044
Monine, 2008, Signal transduction at point-blank range: analysis of a spatial coupling mechanism for pathway crosstalk, Biophys. J., 95, 2172, 10.1529/biophysj.108.128892
Eisenberg, 2006, Clustering of raft-associated proteins in the external membrane leaflet modulates internal leaflet H-ras diffusion and signaling, Mol. Cell. Biol., 26, 7190, 10.1128/MCB.01059-06
Tian, 2010, Mathematical modeling of K-Ras nanocluster formation on the plasma membrane, Biophys. J., 99, 534, 10.1016/j.bpj.2010.04.055
Nussinov, 2015, Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle deregulation, Expert Rev. Proteom., 12, 669, 10.1586/14789450.2015.1100079
Herrmann, 1996, Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor, J. Biol. Chem., 271, 6794, 10.1074/jbc.271.12.6794
Kauke, 2017, An engineered protein antagonist of K-Ras/B-Raf interaction, Sci. Rep., 7, 5831, 10.1038/s41598-017-05889-7
Harjes, 2006, GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1, Structure, 14, 881, 10.1016/j.str.2006.03.008
Liao, 2016, RASSF5: an MST activator and tumor suppressor in vivo but opposite in vitro, Curr. Opin. Struct. Biol., 41, 217, 10.1016/j.sbi.2016.09.001
Quemeneur, 2014, Shape matters in protein mobility within membranes, Proc. Natl. Acad. Sci. U. S. A., 111, 5083, 10.1073/pnas.1321054111
Lommerse, 2006, Single-molecule diffusion reveals similar mobility for the Lck, H-ras, and K-ras membrane anchors, Biophys. J., 91, 1090, 10.1529/biophysj.105.079053
Prior, 2003, Direct visualization of Ras proteins in spatially distinct cell surface microdomains, J. Cell Biol., 160, 165, 10.1083/jcb.200209091
Jang, 2015, Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region, J. Biol. Chem., 290, 9465, 10.1074/jbc.M114.620724
Filipp, 2003, Regulation of Fyn through translocation of activated Lck into lipid rafts, J. Exp. Med., 197, 1221, 10.1084/jem.20022112
Filipp, 2008, Fyn activation requires C terminus-dependent targeting of kinase-active Lck to lipid rafts, J. Biol. Chem., 283, 26409, 10.1074/jbc.M710372200
Melkonian, 1999, Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated, J. Biol. Chem., 274, 3910, 10.1074/jbc.274.6.3910
Rodgers, 1994, Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction, Mol. Cell. Biol., 14, 5384
Shenoy-Scaria, 1994, Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae, J. Cell Biol., 126, 353, 10.1083/jcb.126.2.353
Janes, 1999, Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor, J. Cell Biol., 147, 447, 10.1083/jcb.147.2.447
Kabouridis, 1997, S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes, EMBO J., 16, 4983, 10.1093/emboj/16.16.4983
Lee, 2002, Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1, J. Biol. Chem., 277, 34556, 10.1074/jbc.M204367200
Tansey, 2000, GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival, Neuron, 25, 611, 10.1016/S0896-6273(00)81064-8
Mukherjee, 2003, Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain, J. Biol. Chem., 278, 40806, 10.1074/jbc.M306440200
Chen, 2006, Transient anchorage of cross-linked glycosyl-phosphatidylinositol-anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides, J. Cell Biol., 175, 169, 10.1083/jcb.200512116
Shvartsman, 2007, Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets, J. Cell Biol., 178, 675, 10.1083/jcb.200701133
Ike, 2003, Mechanism of Lck recruitment to the T-cell receptor cluster as studied by single-molecule-fluorescence video imaging, Chemphyschem, 4, 620, 10.1002/cphc.200300670
Douglass, 2005, Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells, Cell, 121, 937, 10.1016/j.cell.2005.04.009
Kenworthy, 2004, Dynamics of putative raft-associated proteins at the cell surface, J. Cell Biol., 165, 735, 10.1083/jcb.200312170
Niv, 2002, Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells, J. Cell Biol., 157, 865, 10.1083/jcb.200202009
Plowman, 2005, H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton, Proc. Natl. Acad. Sci. U. S. A., 102, 15500, 10.1073/pnas.0504114102
Fujiwara, 2002, Phospholipids undergo hop diffusion in compartmentalized cell membrane, J. Cell Biol., 157, 1071, 10.1083/jcb.200202050
Murakoshi, 2004, Single-molecule imaging analysis of Ras activation in living cells, Proc. Natl. Acad. Sci. U. S. A., 101, 7317, 10.1073/pnas.0401354101
Werkmuller, 2013, Rotational and translational dynamics of ras proteins upon binding to model membrane systems, Chemphyschem, 14, 3698, 10.1002/cphc.201300617
Jang, 2017, Flexible-body motions of calmodulin and the farnesylated hypervariable region yield a high-affinity interaction enabling K-Ras4B membrane extraction, J. Biol. Chem., 292, 12544, 10.1074/jbc.M117.785063
Nussinov, 2015, The key role of calmodulin in KRAS-Driven adenocarcinomas, Mol. Cancer Res., 13, 1265, 10.1158/1541-7786.MCR-15-0165
Nussinov, 2017, Calmodulin and IQGAP1 activation of PI3Kalpha and akt in KRAS, HRAS and NRAS-driven cancers, Biochim. Biophys. Acta
Nussinov, 2017, Calmodulin and PI3 K signaling in KRAS cancers, Trends Cancer, 3, 214, 10.1016/j.trecan.2017.01.007
Lu, 2016, Ras conformational ensembles, allostery, and signaling, Chem. Rev., 116, 6607, 10.1021/acs.chemrev.5b00542
Nussinov, 2016, Oncogenic KRAS signaling and YAP1/beta-catenin: similar cell cycle control in tumor initiation, Semin. Cell Dev. Biol., 58, 79, 10.1016/j.semcdb.2016.04.001
Bag, 2015, Plasma membrane organization of epidermal growth factor receptor in resting and ligand-Bound states, Biophys. J ., 109, 1925, 10.1016/j.bpj.2015.09.007
Kusumi, 2011, Hierarchical mesoscale domain organization of the plasma membrane, Trends Biochem. Sci., 36, 604, 10.1016/j.tibs.2011.08.001
Krapf, 2015, Mechanisms underlying anomalous diffusion in the plasma membrane, Curr. Top. Membr., 75, 167, 10.1016/bs.ctm.2015.03.002
Lingwood, 2010, Lipid rafts as a membrane-organizing principle, Science, 327, 46, 10.1126/science.1174621
Sousa, 2012, Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs primarily at the plasma membrane, Proc. Natl. Acad. Sci. U. S. A., 109, 4419, 10.1073/pnas.1200164109
Stabley, 2013, Manipulating the lateral diffusion of surface-anchored EGF demonstrates that receptor clustering modulates phosphorylation levels, Integr. Biol. (Camb.), 5, 659, 10.1039/c3ib20239a
Sawano, 2002, Lateral propagation of EGF signaling after local stimulation is dependent on receptor density, Dev. Cell, 3, 245, 10.1016/S1534-5807(02)00224-1
Bruurs, 2017, A two-Tiered mechanism enables localized cdc42 signaling during enterocyte polarization, Mol. Cell. Biol., 37, 10.1128/MCB.00547-16
Chiou, 2017, Cell polarity in yeast, Annu. Rev. Cell Dev. Biol., 33, 77, 10.1146/annurev-cellbio-100616-060856
Wu, 2015, Role of competition between polarity sites in establishing a unique front, Elife, 4, 10.7554/eLife.11611
Woods, 2015, Polarity establishment requires localized activation of Cdc42, J. Cell Biol., 211, 19, 10.1083/jcb.201506108
Turing, 1952, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci., 237, 37
Goryachev, 2008, Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity, FEBS Lett., 582, 1437, 10.1016/j.febslet.2008.03.029
Wu, 2013, Beyond symmetry-breaking: competition and negative feedback in GTPase regulation, Trends Cell Biol., 23, 476, 10.1016/j.tcb.2013.05.003
Salazar, 2003, Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton, J. Biol. Chem., 278, 49031, 10.1074/jbc.M308104200
Qin, 2010, Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation, J. Cell Biol., 189, 661, 10.1083/jcb.201002097
Kovacs, 2011, Tuba and N-WASP function cooperatively to position the central lumen during epithelial cyst morphogenesis, Cell Adh. Migr., 5, 344, 10.4161/cam.5.4.16717
Otani, 2006, Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells, J. Cell Biol., 175, 135, 10.1083/jcb.200605012