Oncogenic KRas mobility in the membrane and signaling response

Seminars in Cancer Biology - Tập 54 - Trang 109-113 - 2019
Ruth Nussinov1,2, Chung‐Jung Tsai1, Hyunbum Jang1
1Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
2Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Waters, 2017, Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies, Sci. Signal, 10, 10.1126/scisignal.aao3332

Holderfield, 2017, Efforts to develop KRAS inhibitors, Cold Spring Harb. Perspect. Med.

Lu, 2016, Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view, Chem. Soc. Rev., 45, 4929, 10.1039/C5CS00911A

McCormick, 2015, The potential of targeting Ras proteins in lung cancer, Expert Opin. Ther. Targets, 19, 451, 10.1517/14728222.2014.1000304

Zeng, 2017, Potent and selective covalent quinazoline inhibitors of KRAS G12C, Cell Chem. Biol., 24, 1005, 10.1016/j.chembiol.2017.06.017

Lu, 2017, KRAS G12C drug development: discrimination between switch II pocket configurations using hydrogen/Deuterium-exchange mass spectrometry, Structure, 25, 1442, 10.1016/j.str.2017.07.003

Lu, 2016, The structural basis of oncogenic mutations G12 G13 and Q61 in small GTPase K-Ras4B, Sci. Rep., 6, 21949, 10.1038/srep21949

Nussinov, 2018, Oncogenic ras isoforms signaling specificity at the membrane, Cancer Res., 78, 593, 10.1158/0008-5472.CAN-17-2727

Chavan, 2015, Plasma membrane regulates Ras signaling networks, Cell. Logist., 5, e1136374, 10.1080/21592799.2015.1136374

Muratcioglu, 2015, GTP-Dependent K-Ras dimerization, Structure, 23, 1325, 10.1016/j.str.2015.04.019

Chen, 2016, Ras dimer formation as a new signaling mechanism and potential cancer therapeutic target, Mini Rev. Med. Chem., 16, 391, 10.2174/1389557515666151001152212

Jang, 2016, Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers, Biochem. J., 473, 1719, 10.1042/BCJ20160031

Li, 2018, Raf-1 cysteine-rich domain increases the affinity of K-Ras/Raf at the membrane, promoting MAPK signaling, Structure, 26, 513, 10.1016/j.str.2018.01.011

Banerjee, 2016, The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding, Curr. Opin. Struct. Biol., 36, 10, 10.1016/j.sbi.2015.11.010

Jang, 2016, The higher level of complexity of K-Ras4B activation at the membrane, FASEB J., 30, 1643, 10.1096/fj.15-279091

Kapoor, 2012, The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction, Eur. Biophys. J., 41, 801, 10.1007/s00249-012-0841-5

Nussinov, 2016, A new view of ras isoforms in cancers, Cancer Res., 76, 18, 10.1158/0008-5472.CAN-15-1536

Li, 2017, Computational modeling reveals that signaling lipids modulate the orientation of K-Ras4A at the membrane reflecting protein topology, Structure, 25, 679, 10.1016/j.str.2017.02.007

Tsai, 2015, K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif, Proc. Natl. Acad. Sci. U. S. A., 112, 779, 10.1073/pnas.1412811112

Sarkar-Banerjee, 2017, Spatiotemporal analysis of K-Ras plasma membrane interactions reveals multiple high order homo-oligomeric complexes, J. Am. Chem. Soc., 139, 13466, 10.1021/jacs.7b06292

Nussinov, 2018, Is nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild-type KRas can inhibit its oncogenic variant?, Semin. Cancer Biol.

Schmick, 2014, KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport, Cell, 157, 459, 10.1016/j.cell.2014.02.051

Weise, 2012, Dissociation of the K-Ras4B/PDEdelta complex upon contact with lipid membranes: membrane delivery instead of extraction, J. Am. Chem. Soc., 134, 11503, 10.1021/ja305518h

Schaaf, 2009, Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate, Biophys. J., 97, 1206, 10.1016/j.bpj.2009.05.044

Monine, 2008, Signal transduction at point-blank range: analysis of a spatial coupling mechanism for pathway crosstalk, Biophys. J., 95, 2172, 10.1529/biophysj.108.128892

Eisenberg, 2006, Clustering of raft-associated proteins in the external membrane leaflet modulates internal leaflet H-ras diffusion and signaling, Mol. Cell. Biol., 26, 7190, 10.1128/MCB.01059-06

Tian, 2010, Mathematical modeling of K-Ras nanocluster formation on the plasma membrane, Biophys. J., 99, 534, 10.1016/j.bpj.2010.04.055

Nussinov, 2015, Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle deregulation, Expert Rev. Proteom., 12, 669, 10.1586/14789450.2015.1100079

Herrmann, 1996, Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor, J. Biol. Chem., 271, 6794, 10.1074/jbc.271.12.6794

Kauke, 2017, An engineered protein antagonist of K-Ras/B-Raf interaction, Sci. Rep., 7, 5831, 10.1038/s41598-017-05889-7

Harjes, 2006, GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1, Structure, 14, 881, 10.1016/j.str.2006.03.008

Liao, 2016, RASSF5: an MST activator and tumor suppressor in vivo but opposite in vitro, Curr. Opin. Struct. Biol., 41, 217, 10.1016/j.sbi.2016.09.001

Quemeneur, 2014, Shape matters in protein mobility within membranes, Proc. Natl. Acad. Sci. U. S. A., 111, 5083, 10.1073/pnas.1321054111

Lommerse, 2006, Single-molecule diffusion reveals similar mobility for the Lck, H-ras, and K-ras membrane anchors, Biophys. J., 91, 1090, 10.1529/biophysj.105.079053

Prior, 2003, Direct visualization of Ras proteins in spatially distinct cell surface microdomains, J. Cell Biol., 160, 165, 10.1083/jcb.200209091

Jang, 2015, Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region, J. Biol. Chem., 290, 9465, 10.1074/jbc.M114.620724

Filipp, 2003, Regulation of Fyn through translocation of activated Lck into lipid rafts, J. Exp. Med., 197, 1221, 10.1084/jem.20022112

Filipp, 2008, Fyn activation requires C terminus-dependent targeting of kinase-active Lck to lipid rafts, J. Biol. Chem., 283, 26409, 10.1074/jbc.M710372200

Melkonian, 1999, Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated, J. Biol. Chem., 274, 3910, 10.1074/jbc.274.6.3910

Rodgers, 1994, Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction, Mol. Cell. Biol., 14, 5384

Shenoy-Scaria, 1994, Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae, J. Cell Biol., 126, 353, 10.1083/jcb.126.2.353

Janes, 1999, Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor, J. Cell Biol., 147, 447, 10.1083/jcb.147.2.447

Kabouridis, 1997, S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes, EMBO J., 16, 4983, 10.1093/emboj/16.16.4983

Lee, 2002, Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1, J. Biol. Chem., 277, 34556, 10.1074/jbc.M204367200

Tansey, 2000, GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival, Neuron, 25, 611, 10.1016/S0896-6273(00)81064-8

Mukherjee, 2003, Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain, J. Biol. Chem., 278, 40806, 10.1074/jbc.M306440200

Chen, 2006, Transient anchorage of cross-linked glycosyl-phosphatidylinositol-anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides, J. Cell Biol., 175, 169, 10.1083/jcb.200512116

Shvartsman, 2007, Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets, J. Cell Biol., 178, 675, 10.1083/jcb.200701133

Ike, 2003, Mechanism of Lck recruitment to the T-cell receptor cluster as studied by single-molecule-fluorescence video imaging, Chemphyschem, 4, 620, 10.1002/cphc.200300670

Douglass, 2005, Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells, Cell, 121, 937, 10.1016/j.cell.2005.04.009

Kenworthy, 2004, Dynamics of putative raft-associated proteins at the cell surface, J. Cell Biol., 165, 735, 10.1083/jcb.200312170

Niv, 2002, Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells, J. Cell Biol., 157, 865, 10.1083/jcb.200202009

Plowman, 2005, H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton, Proc. Natl. Acad. Sci. U. S. A., 102, 15500, 10.1073/pnas.0504114102

Fujiwara, 2002, Phospholipids undergo hop diffusion in compartmentalized cell membrane, J. Cell Biol., 157, 1071, 10.1083/jcb.200202050

Murakoshi, 2004, Single-molecule imaging analysis of Ras activation in living cells, Proc. Natl. Acad. Sci. U. S. A., 101, 7317, 10.1073/pnas.0401354101

Werkmuller, 2013, Rotational and translational dynamics of ras proteins upon binding to model membrane systems, Chemphyschem, 14, 3698, 10.1002/cphc.201300617

Hancock, 2005, Ras plasma membrane signalling platforms, Biochem. J, 389, 1, 10.1042/BJ20050231

Jang, 2017, Flexible-body motions of calmodulin and the farnesylated hypervariable region yield a high-affinity interaction enabling K-Ras4B membrane extraction, J. Biol. Chem., 292, 12544, 10.1074/jbc.M117.785063

Nussinov, 2015, The key role of calmodulin in KRAS-Driven adenocarcinomas, Mol. Cancer Res., 13, 1265, 10.1158/1541-7786.MCR-15-0165

Nussinov, 2017, Calmodulin and IQGAP1 activation of PI3Kalpha and akt in KRAS, HRAS and NRAS-driven cancers, Biochim. Biophys. Acta

Nussinov, 2017, Calmodulin and PI3 K signaling in KRAS cancers, Trends Cancer, 3, 214, 10.1016/j.trecan.2017.01.007

Lu, 2016, Ras conformational ensembles, allostery, and signaling, Chem. Rev., 116, 6607, 10.1021/acs.chemrev.5b00542

Nussinov, 2016, Oncogenic KRAS signaling and YAP1/beta-catenin: similar cell cycle control in tumor initiation, Semin. Cell Dev. Biol., 58, 79, 10.1016/j.semcdb.2016.04.001

Bag, 2015, Plasma membrane organization of epidermal growth factor receptor in resting and ligand-Bound states, Biophys. J ., 109, 1925, 10.1016/j.bpj.2015.09.007

Kusumi, 2011, Hierarchical mesoscale domain organization of the plasma membrane, Trends Biochem. Sci., 36, 604, 10.1016/j.tibs.2011.08.001

Krapf, 2015, Mechanisms underlying anomalous diffusion in the plasma membrane, Curr. Top. Membr., 75, 167, 10.1016/bs.ctm.2015.03.002

Lingwood, 2010, Lipid rafts as a membrane-organizing principle, Science, 327, 46, 10.1126/science.1174621

Sousa, 2012, Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs primarily at the plasma membrane, Proc. Natl. Acad. Sci. U. S. A., 109, 4419, 10.1073/pnas.1200164109

Stabley, 2013, Manipulating the lateral diffusion of surface-anchored EGF demonstrates that receptor clustering modulates phosphorylation levels, Integr. Biol. (Camb.), 5, 659, 10.1039/c3ib20239a

Sawano, 2002, Lateral propagation of EGF signaling after local stimulation is dependent on receptor density, Dev. Cell, 3, 245, 10.1016/S1534-5807(02)00224-1

Bruurs, 2017, A two-Tiered mechanism enables localized cdc42 signaling during enterocyte polarization, Mol. Cell. Biol., 37, 10.1128/MCB.00547-16

Chiou, 2017, Cell polarity in yeast, Annu. Rev. Cell Dev. Biol., 33, 77, 10.1146/annurev-cellbio-100616-060856

Wu, 2015, Role of competition between polarity sites in establishing a unique front, Elife, 4, 10.7554/eLife.11611

Woods, 2015, Polarity establishment requires localized activation of Cdc42, J. Cell Biol., 211, 19, 10.1083/jcb.201506108

Turing, 1952, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci., 237, 37

Goryachev, 2008, Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity, FEBS Lett., 582, 1437, 10.1016/j.febslet.2008.03.029

Wu, 2013, Beyond symmetry-breaking: competition and negative feedback in GTPase regulation, Trends Cell Biol., 23, 476, 10.1016/j.tcb.2013.05.003

Salazar, 2003, Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton, J. Biol. Chem., 278, 49031, 10.1074/jbc.M308104200

Qin, 2010, Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation, J. Cell Biol., 189, 661, 10.1083/jcb.201002097

Kovacs, 2011, Tuba and N-WASP function cooperatively to position the central lumen during epithelial cyst morphogenesis, Cell Adh. Migr., 5, 344, 10.4161/cam.5.4.16717

Otani, 2006, Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells, J. Cell Biol., 175, 135, 10.1083/jcb.200605012

Johnson, 2012, C-terminal di-arginine motif of Cdc42 protein is essential for binding to phosphatidylinositol 4, 5-bisphosphate-containing membranes and inducing cellular transformation, J. Biol. Chem., 287, 5764, 10.1074/jbc.M111.336487