Use of Dimedone-Based Chemical Probes for Sulfenic Acid Detection
Tài liệu tham khảo
Chen, 2006, Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts, Mol. Pharmacol., 69, 1347, 10.1124/mol.105.017558
Claiborne, 1999, Protein-sulfenic acids: Diverse roles for an unlikely player in enzyme catalysis and redox regulation, Biochemistry, 38, 15407, 10.1021/bi992025k
Cotgreave, 2002, S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase: Role of thiol oxidation and catalysis by glutaredoxin, Methods Enzymol., 348, 175, 10.1016/S0076-6879(02)48636-3
Dennehy, 2006, Cytosolic and nuclear protein targets of thiol-reactive electrophiles, Chem. Res. Toxicol., 19, 20, 10.1021/tx050312l
Fuangthong, 2002, The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative, Proc. Natl. Acad. Sci. USA, 99, 6690, 10.1073/pnas.102483199
Hondorp, 2004, Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli, PLoS Biol., 2, e336, 10.1371/journal.pbio.0020336
Hong, 2005, Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family, Mol. Cell, 20, 131, 10.1016/j.molcel.2005.09.013
Hoppe, 2004, Protein s-glutathionylation in retinal pigment epithelium converts heat shock protein 70 to an active chaperone, Exp. Eye Res., 78, 1085, 10.1016/j.exer.2004.02.001
Jakob, 1999, Chaperone activity with a redox switch, Cell, 96, 341, 10.1016/S0092-8674(00)80547-4
Jones, 2006, Disruption of mitochondrial redox circuitry in oxidative stress, Chem. Biol. Interact., 163, 38, 10.1016/j.cbi.2006.07.008
Kang, 1999, RsrA, an anti-sigma factor regulated by redox change, EMBO J., 18, 4292, 10.1093/emboj/18.15.4292
Klomsiri, 2010, Use of dimedone-based chemical probes for sulfenic acid detection. Evaluation of conditions affecting probe incorporation into redox-sensitive proteins., Methods Enzymol., 473, 77, 10.1016/S0076-6879(10)73003-2
Kuge, 2001, Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation, Mol. Cell Biol., 21, 6139, 10.1128/MCB.21.18.6139-6150.2001
Kwon, 2004, Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors, Proc. Natl. Acad. Sci USA, 101, 16419, 10.1073/pnas.0407396101
Kwon, 2005, Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76-ADAP, EMBO J., 24, 2331, 10.1038/sj.emboj.7600706
Lee, 2002, Reversible inactivation of the tumor suppressor PTEN by H2O2, J. Biol. Chem., 277, 20336, 10.1074/jbc.M111899200
Leonard, 2009, Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells, ACS Chem. Biol., 4, 783, 10.1021/cb900105q
Meng, 2002, Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo, Mol. Cell, 9, 387, 10.1016/S1097-2765(02)00445-8
Nelson, 2008, Cysteine pKa values for the bacterial peroxiredoxin AhpC, Biochemistry, 47, 12860, 10.1021/bi801718d
Panmanee, 2006, Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress, J. Bacteriol., 188, 1389, 10.1128/JB.188.4.1389-1395.2006
Poole, 1996, Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins, Biochemistry, 35, 56, 10.1021/bi951887s
Poole, 2008, Discovering mechanisms of signaling-mediated cysteine oxidation, Curr. Opin. Chem. Biol., 12, 18, 10.1016/j.cbpa.2008.01.021
Poole, 2004, Protein sulfenic acids in redox signaling, Annu. Rev. Pharmacol. Toxicol., 44, 325, 10.1146/annurev.pharmtox.44.101802.121735
Poole, 2007, Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins, Bioconjug. Chem., 18, 2004, 10.1021/bc700257a
Rainwater, 1995, Role of cysteine residues in regulation of p53 function, Mol. Cell Biol., 15, 3892, 10.1128/MCB.15.7.3892
Reddie, 2008, A chemical approach for detecting sulfenic acid-modified proteins in living cells, Mol. Biosyst., 4, 521, 10.1039/b719986d
Schmalhausen, 1999, Mildly oxidized GAPDH: the coupling of the dehydrogenase and acyl phosphatase activities, FEBS Lett., 452, 219, 10.1016/S0014-5793(99)00627-4
Schneider, 2007, Control of oxygenation in lipoxygenase and cyclooxygenase catalysis, Chem. Biol., 14, 473, 10.1016/j.chembiol.2007.04.007
Shevchenko, 2006, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat. Protoc., 1, 2856, 10.1038/nprot.2006.468
Shin, 2007, Protein targets of reactive electrophiles in human liver microsomes, Chem. Res. Toxicol., 20, 859, 10.1021/tx700031r
Thomas, 2008, Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities, Antioxid. Redox Signal., 10, 1713, 10.1089/ars.2008.2027
Tonks, 2005, Redox redux: Revisiting PTPs and the control of cell signaling, Cell, 121, 667, 10.1016/j.cell.2005.05.016
Zheng, 1998, Activation of the OxyR transcription factor by reversible disulfide bond formation, Science, 279, 1718, 10.1126/science.279.5357.1718
