Uptake and elimination kinetics of metals in soil invertebrates: A review

Environmental Pollution - Tập 193 - Trang 277-295 - 2014
Masoud M. Ardestani1, Nico M. van Straalen1, Cornelis A.M. van Gestel1
1Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ardestani, 2013, Dynamic bioavailability of copper in soil estimated by uptake and elimination kinetics in the springtail Folsomia candida, Ecotoxicology, 2, 308, 10.1007/s10646-012-1027-8

Ardestani, 2013, Using a toxicokinetics approach to explain the effect of soil pH on cadmium bioavailability to Folsomia candida, Environ. Pollut., 180, 122, 10.1016/j.envpol.2013.05.024

Ardestani, 2013, Toxicodynamics of copper and cadmium in Folsomia candida exposed to simulated soil solutions, Environ. Toxicol. Chem., 32, 2746, 10.1002/etc.2353

Ardestani, 2014, The effect of pH and calcium on copper availability to the springtail Folsomia candida in simplified soil solutions, Pedobiologia, 57, 53, 10.1016/j.pedobi.2013.12.001

Ardestani, 2013, The influence of Ca and pH on the uptake and effects of Cd in Folsomia candida exposed to simplified soil solutions, Environ. Toxicol. Chem., 32, 1759, 10.1002/etc.2243

Ardestani, 2014, A combined toxicokinetics and toxicodynamics approach to assess the effect of porewater composition on cadmium bioavailability to Folsomia candida, Environ. Toxicol. Chem., 33, 1570, 10.1002/etc.2585

Ardestani, 2013, The influence of calcium and pH on the uptake and toxicity of copper in Folsomia candida exposed to simplified soil solutions, J. Hazard. Mater., 261, 405, 10.1016/j.jhazmat.2013.07.032

Ashauer, 2007, New ecotoxicological model to simulate survival of aquatic invertebrates after exposure to fluctuating and sequential pulses of pesticides, Environ. Sci. Technol., 41, 1480, 10.1021/es061727b

ASTM, 1997, vol. 11.05, 1056

Atkins, 1969

Bednarska, 2011, Two-phase uptake of nickel in the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae): implications for invertebrate metal kinetics, Arch. Environ. Contam. Toxicol., 60, 722, 10.1007/s00244-010-9581-7

Bibĭc, 1997, Assimilation of zinc in Porcellio scaber (Isopoda, Crustacea) exposed to zinc, Bull. Environ. Contam. Toxicol., 58, 814, 10.1007/s001289900407

Bielská, 2012, Variability of standard artificial soils: physic-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction, Environ. Pollut., 163, 1, 10.1016/j.envpol.2011.12.009

Boullemant, 2009, Uptake of hydrophobic metal complexes by three freshwater algae: unexpected influence of pH, Environ. Sci. Technol., 43, 3308, 10.1021/es802832u

Bryan, 1976, Heavy metal contamination in the sea, 185

Campbell, 1995, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, 45

Carpene, 2006, Distribution of Cd, Zn, Cu, and Fe among selected tissues of the earthworm (Allolobophora caliginosa) and Eurasian woodcock (Scolopax rusticula), Sci. Total Environ., 363, 126, 10.1016/j.scitotenv.2005.06.023

Cobbett, 2002, Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol., 53, 159, 10.1146/annurev.arplant.53.100301.135154

Conder, 2002, Method for determining toxicologically relevant cadmium residues in the earthworm Eisenia fetida, Chemosphere, 49, 1, 10.1016/S0045-6535(02)00192-3

Crommentuijn, 1994, Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods, Environ. Toxicol. Chem., 13, 1781, 10.1002/etc.5620131109

Crommentuijn, 1997, Bioavailability and ecological effects of cadmium on Folsomia candida (Willem) in an artificial soil substrate as influenced by pH and organic matter, Appl. Soil Ecol., 5, 261, 10.1016/S0929-1393(97)00003-6

Crossley, 1995, Turnover of cobalt-60 by earthworms (Eisenia foetida) (Lumbricidae, Oligochaeta), Appl. Soil Ecol., 2, 71, 10.1016/0929-1393(94)00045-9

Dallinger, 1993, Strategies of metal detoxification in terrestrial invertebrates, 245

Dallinger, 1997, Metallothionein in snail Cd and Cu metabolism, Nature, 388, 237, 10.1038/40785

Demuynck, 2007, Cd/Zn exposure interactions on metallothionein response in Eisenia fetida (Annelida, Oligochaeta), Comp. Biochem. Physiol. C, 145, 658

Depledge, 1990, Models of regulation and accumulation of trace metals in marine invertebrates, Comp. Biochem. Physiol. C, 97, 1, 10.1016/0742-8413(90)90163-4

Descamps, 1996, Cadmium and lead kinetics during experimental contamination of the centipede Lithobius forficatus L., Arch. Environ. Contam. Toxicol., 31, 350, 10.1007/BF00212673

Diez Ortiz, 2010, Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei, Chemosphere, 80, 1036, 10.1016/j.chemosphere.2010.05.029

Di Toro, 2001, Biotic ligand model of the acute toxicity of metals. 1. Technical basis, Environ. Toxicol. Chem., 20, 2383, 10.1002/etc.5620201034

Donker, 1996, The role of zinc regulation in the zinc tolerance mechanism of the terrestrial isopod Porcellio scaber, J. Appl. Ecol., 33, 955, 10.2307/2404677

Ferreira, 2009, Modelling exchange kinetics of copper at the water-aquatic moss (Fontinalis antipyretica) interface: influence of water cationic composition (Ca, Mg, Na and pH), Chemosphere, 74, 1117, 10.1016/j.chemosphere.2008.10.031

Fountain, 2001, Continuous monitoring of Folsomia candida (Insecta: Collembola) in a metal exposure test, Ecotoxicol. Environ. Saf., 48, 275, 10.1006/eesa.2000.2007

Fountain, 2005, Folsomia candida (Collembola): a “standard” soil arthropod, Annu. Rev. Entomol., 50, 201, 10.1146/annurev.ento.50.071803.130331

Gal, 1988, 77

Gimbert, 2006, Modelling chronic exposure to contaminated soil: a toxicokinetic approach with the terrestrial snail Helix aspersa, Environ. Int., 32, 866, 10.1016/j.envint.2006.05.006

Gimbert, 2008, How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails, Environ. Toxicol. Chem., 27, 1284, 10.1897/07-503.1

Giska, 2014, Toxicokinetics of metals in the earthworm Lumbricus rubellus exposed to natural polluted soils – relevance of laboratory tests to the field situation, Environ. Pollut., 190, 123, 10.1016/j.envpol.2014.03.022

Goering, 1983, Altered subcellular distribution of cadmium following cadmium pretreatment: possible mechanism of tolerance to cadmium-induced lethality, Toxicol. Appl. Pharmacol., 70, 195, 10.1016/0041-008X(83)90095-9

Grzes, 2012, Zinc kinetics in the ant Myrmica rubra originating from a metal pollution gradient, Chemosphere, 88, 1015, 10.1016/j.chemosphere.2012.03.063

Hames, 1991, A daily cycle of apocrine secretion by the B cells in the hepatopancreas of terrestrial isopods, Can. J. Zool., 69, 1931, 10.1139/z91-267

Hames, 1991, Assimilation and loss of 109Cd and 65Zn by the terrestrial isopods Oniscus asellus and Porcellio scaber, Bull. Environ. Contam. Toxicol., 47, 440, 10.1007/BF01702208

He, 2013, Toxicokinetics and toxicodynamics of nickel in Enchytraeus crypticus, Environ. Toxicol. Chem., 32, 1835, 10.1002/etc.2253

Heikens, 2001, Bioaccumulation of heavy metals in terrestrial invertebrates, Environ. Pollut., 113, 385, 10.1016/S0269-7491(00)00179-2

Hendriks, 2001, The power of size 2. Rate constants and equilibrium ratios for accumulation of organic substance related to octanol-water partition ratio and species weight, Environ. Toxicol. Chem., 20, 1421, 10.1002/etc.5620200704

Hendriks, 2001, The power of size 1. Rate constants and equilibrium ratios for accumulation of organic substance related to octanol-water partition ratio and species weight, Environ. Toxicol. Chem., 20, 1399, 10.1002/etc.5620200703

Hensbergen, 1999, Primary structure of a cadmium-induced metallothionein from the insect Orchesella cincta (Collembola), Eur. J. Biochem., 259, 197, 10.1046/j.1432-1327.1999.00016.x

Hensbergen, 2000, Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposure, Comp. Biochem. Physiol. C, 125, 17

Hobbelen, 2006, Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils, Environ. Pollut., 144, 639, 10.1016/j.envpol.2006.01.019

Hopkin, 1989

Hopkin, 1990, Species-specific differences in the net assimilation of zinc, cadmium, lead, copper and iron by the terrestrial isopods Oniscus asellus and Porcellio scaber, J. Appl. Ecol., 27, 460, 10.2307/2404294

Houx, 1996, Acute toxicity test for terrestrial hazard assessment with exposure of Folsomia candida to pesticides in an aqueous medium, Arch. Environ. Contam. Toxicol., 30, 9, 10.1007/BF00211323

Ireland, 1978, Heavy metal binding properties of earthworm chloagosomes, Acta Biol. Acad. Sci. Hung., 29, 385

Ireland, 1979, Metal accumulation by earthworms Lumbricus rubellus, Dendrobaena veneta, and Eiseniella tetraedra living in heavy metal polluted sites, Environ. Pollut., 19, 201, 10.1016/0013-9327(79)90041-7

Ireland, 1981, Metal content, after exposure to cadmium, of two species of earthworms of known differing calcium metabolic activity, Environ. Pollut., 26A, 69, 10.1016/0143-1471(81)90099-4

Jager, 2011, General Unified Threshold Model of survival – a toxicokinetic-toxicodynamic framework for ecotoxicology, Environ. Sci. Technol., 45, 2529, 10.1021/es103092a

Janssen, 1991, The effect of temperature on cadmium kinetics and oxygen consumption in soil arthropods, Environ. Toxicol. Chem., 10, 1493, 10.1002/etc.5620101115

Janssen, 1991, Comparison of cadmium kinetics in four soil arthropod species, Arch. Environ. Contam. Toxicol., 20, 305, 10.1007/BF01064395

Janssen, 1997, Equilibrium partitioning of heavy metals in Dutch field soils. II. Prediction of metal accumulation in earthworms, Environ. Toxicol. Chem., 16, 2479, 10.1002/etc.5620161207

Janssens, 2009, Molecular mechanisms of heavy metal tolerance and evolution in invertebrates, Insect Sci., 16, 3, 10.1111/j.1744-7917.2009.00249.x

Kramarz, 1999, Dynamics of accumulation and decontamination of cadmium and zinc in carnivorous invertebrates. 1. The ground beetle, Poecilus cupreus L., Bull. Environ. Contam. Toxicol., 63, 531, 10.1007/s001289901013

Kramarz, 1999, Dynamics of accumulation and decontamination of cadmium and zinc in carnivorous invertebrates. 2. The centipede Lithobius mutabilis Koch, Bull. Environ. Contam. Toxicol., 63, 538, 10.1007/s001289901014

Lagisz, 2005, Metal kinetics and respiration rates in F1 generation of carabid beetles (Pterostichus oblongopunctatus F.) originating from metal contaminated and reference areas, Arch. Environ. Contam. Toxicol., 48, 484, 10.1007/s00244-004-0023-2

Laskowski, 2010, Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations, Sci. Total Environ., 408, 3794, 10.1016/j.scitotenv.2009.11.017

Lee, 1985

Li, 2009, Kinetics of cadmium uptake and subcellular partitioning in the earthworm Eisenia fetida exposed to cadmium-contaminated soil, Arch. Environ. Contam. Toxicol., 57, 718, 10.1007/s00244-009-9296-9

Liao, 2007, Linking valve closure behavior and sodium transport mechanism in freshwater clam Corbicula fluminea in response to copper, Environ. Pollut., 147, 656, 10.1016/j.envpol.2006.09.017

Lindqvist, 1995, Distribution and excretion of Cd, Hg, methyl-Hg and Zn in the predatory beetle Pterostichus niger (Coleoptera: Carabidae), Environ. Toxicol. Chem., 14, 1195, 10.1002/etc.5620140711

Lock, 2001, Zinc and cadmium body burdens in terrestrial oligochaetes: use and significance in environmental risk assessment, Environ. Toxicol. Chem., 20, 2067, 10.1002/etc.5620200928

Luoma, 2005, Why is metal bioaccumulation so variable? Biodynamics as a unifying concept, Environ. Sci. Technol., 39, 1921, 10.1021/es048947e

Luoma, 2008

Ma, 1984, Sublethal toxic effects of copper on growth, reproduction and litter breakdown activity in the earthworm Lumbricus rubellus, with observations on the influence of temperature and soil pH, Environ. Pollut., 33, 207, 10.1016/0143-1471(84)90011-4

Mackie, 2012, Remediation of copper in vineyards – a mini review, Environ. Pollut., 167, 16, 10.1016/j.envpol.2012.03.023

Maenpaa, 2002, Remediation of heavy metal-contaminated soils using phosphorus: evaluation of bioavailability using an earthworm bioassay, Arch. Environ. Contam. Toxicol., 43, 389, 10.1007/s00244-002-1248-6

Marino, 1999, The time-course of metal (Ca, Cd, Cu, Pb, Zn) accumulation from a contaminated soil by three populations of the earthworm, Lumbricus rubellus, Appl. Soil Ecol., 12, 169, 10.1016/S0929-1393(99)00003-7

Marinussen, 1997, Cu accumulation in the earthworm Dendrobaena veneta in a heavy metal (Cu, Pb, Zn) contaminated site compared to Cu accumulation in laboratory experiments, Environ. Pollut., 96, 227, 10.1016/S0269-7491(97)00017-1

Marinussen, 1997, Heavy metal (copper, lead, and zinc) accumulation and excretion by earthworm, Dendrobaena veneta, J. Environ. Qual., 26, 278, 10.2134/jeq1997.00472425002600010039x

McGeer, 2003, Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment, Environ. Toxicol. Chem., 22, 1017, 10.1002/etc.5620220509

Melancon, 1992, Metabolic products as biomarkers, 87

Morel, 1983

Morgan, 1988, Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils, Environ. Pollut., 54, 123, 10.1016/0269-7491(88)90142-X

Morgan, 1990, The distribution of cadmium, copper, lead, zinc and calcium in the tissues of the earthworm Lumbricus rubellus sampled from one uncontaminated and four polluted soils, Oecologia, 84, 559, 10.1007/BF00328174

Morgan, 1993, Heavy metal relationships of earthworms, 333

Morgan, 2004, Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues, Ecotoxicol. Environ. Saf., 57, 11, 10.1016/j.ecoenv.2003.08.022

Nahmani, 2007, A review of studies performed to assess metal uptake by earthworms, Environ. Pollut., 145, 402, 10.1016/j.envpol.2006.04.009

Nahmani, 2009, Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils, Environ. Pollut., 157, 2622, 10.1016/j.envpol.2009.05.002

Neuhauser, 1995, Bioconcentration and biokinetics of heavy metals in the earthworm, Environ. Pollut., 89, 293, 10.1016/0269-7491(94)00072-L

Panda, 1999, Accumulation of zinc and its effects on the growth, reproduction and life cycle of Drawida willsi (Oligochaeta), a dominant earthworm in Indian crop fields, Biol. Fertil. Soils, 29, 419, 10.1007/s003740050574

Peijnenburg, 1999, Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the Oligochaete Eisenia andrei, Ecotoxicol. Environ. Saf., 44, 294, 10.1006/eesa.1999.1838

Peijnenburg, 1999, Prediction of metal bioavailability in Dutch field soils for the Oligochaete Enchytraeus crypticus, Ecotoxicol. Environ. Saf., 43, 170, 10.1006/eesa.1999.1773

Posthuma, 1997, Single and joint toxic effects of copper and zinc on reproduction of Enchytraeus crypticus in relation to sorption of metals in soils, Ecotoxicol. Environ. Saf., 38, 108, 10.1006/eesa.1997.1568

Posthuma, 1992, Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L.) (Collembola), Arch. Environ. Contam. Toxicol., 22, 146, 10.1007/BF00213314

Rainbow, 2002, Trace metal concentrations in aquatic invertebrates: why and so what?, Environ. Pollut., 120, 497, 10.1016/S0269-7491(02)00238-5

Rainbow, 2007, Trace metal bioaccumulation: models, metabolic availability, and toxicity, Environ. Int., 33, 576, 10.1016/j.envint.2006.05.007

Rainbow, 2011, Trace metals in aquatic invertebrates, 231

Reinecke, 1999, Resistance of Eisenia fetida (Oligochaeta) to cadmium after longterm exposure, Ecotoxicol. Environ. Saf., 42, 75, 10.1006/eesa.1998.1731

Roelofs, 2009, Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta, Mol. Ecol., 18, 3227, 10.1111/j.1365-294X.2009.04261.x

Roesijadi, 1992, Matallothioneines in metal regulation and toxicity in aquatic animals, Aquat. Toxicol., 22, 81, 10.1016/0166-445X(92)90026-J

Saxe, 2001, Novel model describing trace metal concentrations in the earthworm, Eisenia andrei, Environ. Sci. Technol., 35, 4522, 10.1021/es0109038

Sheppard, 1997, Depuration and uptake kinetics of I, Cs, Mn, Zn and Cd by the earthworm (Lumbricus terrestris) in radiotracer-spiked litter, Environ. Toxicol. Chem., 16, 2106, 10.1002/etc.5620161017

Smit, 1997, Influence of temperature on the regulation and toxicity of zinc in Folsomia candida, Ecotoxicol. Environ. Saf., 37, 213, 10.1006/eesa.1997.1558

Smith, 2010, Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil, Arch. Environ. Contam. Toxicol., 59, 264, 10.1007/s00244-009-9459-8

Spurgeon, 1999, Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils, Appl. Soil Ecol., 11, 227, 10.1016/S0929-1393(98)00150-4

Steenbergen, 2005, Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa, Environ. Sci. Technol., 39, 5694, 10.1021/es0501971

Sterenborg, 2003, Field-selected cadmium tolerance in the springtail Orchesella cincta is correlated with increased metallothionein mRNA expression, Insect Biochem. Mol. Biol., 33, 741, 10.1016/S0965-1748(03)00070-5

Sterenborg, 2003, Dietary zinc reduces uptake but not metallothionein binding and elimination of cadmium in the springtail, Orchesella cincta, Environ. Toxicol. Chem., 22, 1167, 10.1002/etc.5620220528

Stürzenbaum, 2001, Metal ion trafficking in earthworms–identification of a cadmium specific metallothionein, J. Biol. Chem., 276, 34013, 10.1074/jbc.M103605200

Stürzenbaum, 2004, Cadmium detoxification in earthworms: from genes to cells, Environ. Sci. Technol., 38, 6283, 10.1021/es049822c

Thakali, 2006, Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil, Environ. Sci. Technol., 40, 7094, 10.1021/es061173c

Van Gestel, 1997, Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use of bioassays, 25

Van Gestel, 2012, Soil ecotoxicology: state of the art and future directions, ZooKeys, 176, 275, 10.3897/zookeys.176.2275

Van Gestel, 1993, Accumulation and elimination of cadmium, chromium, and zinc and effects on growth and reproduction in Eisenia andrei (Oligochaeta, Annelida), Sci. Total Environ. Suppl. 585–597, 10.1016/S0048-9697(05)80061-0

Van Gestel, 2003, The influence of soil characteristics on cadmium toxicity to Folsomia candida (Collembola: Isotomidae), Pedobiologia, 47, 387, 10.1078/0031-4056-00202

Van Leeuwen, 2007

Van Straalen, 1996, Critical body concentrations: their use in bioindication, 5

Van Straalen, 1987, Efficiency of lead and cadmium excretion in populations of Orchesella cincta (Collembola) from various contaminated forest soils, J. Appl. Ecol., 24, 953, 10.2307/2403992

Van Straalen, 2005, Bioavailability of contaminants estimated from uptake rates into soil invertebrates, Environ. Pollut., 136, 409, 10.1016/j.envpol.2005.01.019

Van Straalen, 1987, Biological half-lives of lead in Orchesella cincta (L.) (Collembola), Bull. Environ. Contam. Toxicol., 38, 213, 10.1007/BF01606664

Veltman, 2010, Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms, Environ. Sci. Technol., 44, 5022, 10.1021/es903697c

Veltman, 2007, Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data, Environ. Pollut., 146, 428, 10.1016/j.envpol.2006.06.033

Vijver, 2001, Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola), Environ. Toxicol. Chem., 20, 712, 10.1002/etc.5620200404

Vijver, 2004, Internal metal-sequestration and its ecotoxicological relevance – a review, Environ. Sci. Technol., 38, 4705, 10.1021/es040354g

Vijver, 2006, Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa), Environ. Toxicol. Chem., 25, 807, 10.1897/05-128R.1

Vijver, 2006, Kinetics of Zn and Cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and food, Soil Biol. Biochem., 38, 1554, 10.1016/j.soilbio.2005.11.006

Vijver, 2005, Biphasic elimination and uptake kinetics of Zn and Cd in the earthworm Lumbricus rubellus exposed to contaminated floodplain soil, Soil Biol. Biochem., 37, 1843, 10.1016/j.soilbio.2005.02.016

Vijver, 2003, Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms, Soil Biol. Biochem., 35, 125, 10.1016/S0038-0717(02)00245-6

Wang, 2008, Comparative approaches to understand metal bioaccumulation in aquatic animals, Comp. Biochem. Physiol. C, 148, 315

White, 1985, On the metabolic requirements for copper and zinc in molluscs and crustaceans, Mar. Environ. Res., 16, 215, 10.1016/0141-1136(85)90139-4

Widianarko, 1996, Toxicokinetics-based survival analysis in bioassays using non-persistent chemicals, Environ. Toxicol. Chem., 15, 402, 10.1002/etc.5620150326