Petrogenesis and geodynamic implications of two episodes of Permian and Triassic high-silica granitoids in the Chinese Altai, Central Asian Orogenic Belt
Tài liệu tham khảo
Andersen, 2002, Correction of common lead in U-Pb analyses that do not report 204Pb, Chem. Geol., 192, 59, 10.1016/S0009-2541(02)00195-X
Andersen, 2006, Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica, Earth Planet. Sci. Lett., 242, 58, 10.1016/j.epsl.2005.11.058
Bachmann, 2008, Rhyolites and their source mushes across tectonic settings, J. Petrol., 49, 2277, 10.1093/petrology/egn068
Barbarin, 1996, Genesis of the two main types of peraluminous granitoids, Geology, 24, 295, 10.1130/0091-7613(1996)024<0295:GOTTMT>2.3.CO;2
Bennett, 1993, Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth, Earth Planet. Sci. Lett., 119, 299, 10.1016/0012-821X(93)90140-5
Black, 1993, Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony, J. Geol. Soc., 150, 89, 10.1144/gsjgs.150.1.0088
Bonin, 2004, Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review, Lithos, 78, 1, 10.1016/j.lithos.2004.04.042
Bonin, 2007, A-type granites and related rocks: evolution of a concept, problems and prospects, Lithos, 97, 1, 10.1016/j.lithos.2006.12.007
Bonin, 1998, Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings, Lithos, 45, 45, 10.1016/S0024-4937(98)00025-5
Briggs, 2007, Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System, Geol. Soc. Am. Bull., 119, 944, 10.1130/B26044.1
Briggs, 2009, Tectonic development of the southern Chinese Altai Range as determined by structural geology, thermobarometry, 40Ar/39Ar thermochronology, Th/Pb ion-microprobe monazite geochronology, Geol. Soc. Am. Bull., 121, 1381, 10.1130/B26385.1
Brown, 1998, Frictional heating on faults: Stable sliding versus stick slip, J. Geophys. Res. Solid Earth, 103, 7413, 10.1029/98JB00200
Buslov, 2004, Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation, J. Asian Earth Sci., 23, 655, 10.1016/S1367-9120(03)00131-7
Cai, 2007, Geochemical characteristics and 40Ar–39Ar ages of the amphibolites and gabbros in Tarlang area: implications for tectonic evolution of the Chinese Altai, Acta Petrol. Sin., 23, 877
Cai, 2011, Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: a review, Russ. Geol. Geophys., 52, 1619, 10.1016/j.rgg.2011.11.014
Castillo, 1999, Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting, Contrib. Miner. Petrol., 134, 33, 10.1007/s004100050467
Chai, 2009, Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang: implications for the tectonic evolution and metallogeny, Gondwana Res., 16, 189, 10.1016/j.gr.2009.03.002
Chappell, 1999, Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites, Lithos, 46, 535, 10.1016/S0024-4937(98)00086-3
Chappell, 1992, I- and S-type granites in the Lachlan Fold Belt, Earth Environ. Sci. Trans. Roy. Soc. Edinburgh, 83, 1, 10.1017/S0263593300007720
Chen, 2002, Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications, Geol. Mag., 39, 1, 10.1017/S0016756801006100
Chen, 2002, Temporo–spatial distribution of rare metal and REE deposits in Xinjiang, Northwest China, Acta Geol. Sin., 76, 478, 10.1111/j.1755-6724.2002.tb00101.x
Chen, 2006, Geochronology, geochemistry and Sr–Nd–Pb isotopic composition of mafic intrusive rocks in Wuqiagou area, north Xinjiang: constraints for mantle sources and deep processes, Acta Petrol. Mineral., 22, 1201
Collins, 1982, Nature and origin of A-type granites with particular reference to southeastern Australia, Contrib. Miner. Petrol., 80, 189, 10.1007/BF00374895
Cox, 1979
Defant, 1993, Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc, Geology, 21, 547, 10.1130/0091-7613(1993)021<0547:MSHPEO>2.3.CO;2
Del Gaudio, 2009, Frictional melting of peridotite and seismic slip, J. Geophys. Res. Solid Earth, 114, 1, 10.1029/2008JB005990
Duggen, 2005, Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere, J. Petrol., 46, 1155, 10.1093/petrology/egi013
Eby, 1992, Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications, Geology, 20, 641, 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Ewing, 2003, Radiation effects in zircon, Rev. Mineral. Geochem., 53, 387, 10.2113/0530387
Garrison, 2003, Dubious case for slab melting in the Northern volcanic zone of the Andes, Geology, 31, 565, 10.1130/0091-7613(2003)031<0565:DCFSMI>2.0.CO;2
Gerdes, 2000, Post-collisional granite generation and HT–LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith, J. Geol. Soc., 157, 577, 10.1144/jgs.157.3.577
Glazner, 2008, The tenuous connection between high-silica rhyolites and granodiorite plutons, Geology, 36, 183, 10.1130/G24496A.1
Goldstein, 1988, Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 87, 249, 10.1016/0012-821X(88)90013-1
Gualda, 2013, Low-pressure origin of high-silica rhyolites and granites, J. Geol., 121, 537, 10.1086/671395
Han, 2004, SHIMP zircon U-Pb age of Kalatongke No.1 and Huangshandong Cu–Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications, Chin. Sci. Bull., 49, 2424
Han, 2007, Re–Os dating of the Kalatongke Cu–Ni deposit, Altay Shan, NW China, and resulting geodynamic implications, Ore Geol. Rev., 32, 452, 10.1016/j.oregeorev.2006.11.004
Hofmann, 1988, Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 90, 297, 10.1016/0012-821X(88)90132-X
Hoffmann, 2011, The origin of decoupled Hf–Nd isotope compositions in Eoarchean rocks from southern West Greenland, Geochim. Cosmochim. Acta, 75, 6610, 10.1016/j.gca.2011.08.018
Jackson, 2007, The return of subducted continental crust in Samoan lavas, Nature, 448, 684, 10.1038/nature06048
Jahn, 2000, Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic, Earth Environ. Sci. Trans. Roy. Soc. Edinburgh, 91, 181, 10.1017/S0263593300007367
Janoušek, 2007, The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif, Proc. Geol. Assoc., 118, 75, 10.1016/S0016-7878(07)80049-6
Jung, 2007, Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry, Eur. J. Mineral., 19, 859, 10.1127/0935-1221/2007/0019-1774
Kanamori, 2001, Energy budget of earthquakes and seismic efficiency, Earthq. Thermodyn. Phase Transform. Earth's Interior, 76, 293, 10.1016/S0074-6142(01)80087-5
Kempton, 1995, Petrology and geochemistry of xenoliths from the Northern Baltic shield: evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrane, Lithos, 36, 157, 10.1016/0024-4937(95)00016-X
Lee, 2005, Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions, J. Petrol., 46, 2313, 10.1093/petrology/egi056
Lee, 2015, High silica granites: Terminal porosity and crystal settling in shallow magma chambers, Earth Planet. Sci. Lett., 409, 23, 10.1016/j.epsl.2014.10.040
Liegeois, 1998, Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization, Lithos, 45, 1, 10.1016/S0024-4937(98)00023-1
Li, 2006, Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: part of a Neoproterozoic mantle superplume beneath Rodinia?, Precambr. Res., 146, 1, 10.1016/j.precamres.2005.12.007
Li, 2004, The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts, Earth Planet. Sci. Lett., 228, 483, 10.1016/j.epsl.2004.10.006
Liu, 2008, SHRIMP U-Pb Ages of the Abagong granites in the Altay orogen and their geological implications, Acta Geosci. Sin., 29, 795
Liu, 2014, New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton, Ore Geol. Rev., 56, 209, 10.1016/j.oregeorev.2013.08.020
Lin, 2016, Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios, Solid Earth Sci., 1, 5, 10.1016/j.sesci.2016.04.002
Liu, 2012, Massive granitoid production without massive continental-crust growth in the Chinese Altay: Insight into the source rock of granitoids using integrated zircon U-Pb age, Hf-Nd-Sr isotopes and geochemistry, Am. J. Sci., 312, 629, 10.2475/06.2012.02
Long, 2007, Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt, Tectonics, 26, 1, 10.1029/2007TC002128
Ludwig, 2003, Isoplot 3.00: a geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center Special Publ., 4, 1
Michael, 1983, Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes, Geology, 11, 31, 10.1130/0091-7613(1983)11<31:CDOTBT>2.0.CO;2
Nesbitt, 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations, Geochim. Cosmochim. Acta, 48, 1523, 10.1016/0016-7037(84)90408-3
Nikishin, 2002, Permo-Triassic intraplate magmatism and rifting in Eurasia: implications for mantle plumes and mantle dynamics, Tectonophysics, 351, 3, 10.1016/S0040-1951(02)00123-3
Obata, 1995, Ultramafic pseudotachylite from the Balmuccia peridotite, Ivrea-Verbano zone, northern Italy, Tectonophysics, 242, 313, 10.1016/0040-1951(94)00228-2
Otsuki, 2003, Fluidization and melting of fault gouge during seismic slip: Identification in the Nojima fault zone and implications for focal earthquake mechanisms, J. Geophys. Res. Solid Earth, 108, 1, 10.1029/2001JB001711
Patiño Douce, 1991, Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites, Contrib. Miner. Petrol., 107, 202, 10.1007/BF00310707
Pearce, 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 25, 956, 10.1093/petrology/25.4.956
Peccerillo, 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey, Contrib. Miner. Petrol., 58, 63, 10.1007/BF00384745
Rapp, 1995, Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling, J. Petrol., 36, 891, 10.1093/petrology/36.4.891
Rapp, 1999, Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa, Chem. Geol., 160, 335, 10.1016/S0009-2541(99)00106-0
Rudnick, 2003, Composition of the continental crust, Treat. Geochem., 3, 1
Salters, 2004, Composition of the depleted mantle, Geochem. Geophys. Geosyst., 5, 1, 10.1029/2003GC000597
Sengör, 1993, Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia, Nature, 364, 299, 10.1038/364299a0
Sengör, 1996, Turkic-type orogeny and its role in the making of the continental crust, Annu. Rev. Earth Planet. Sci., 24, 263, 10.1146/annurev.earth.24.1.263
Sheldrick, 2018, Constraining lithospheric removal and asthenospheric input to melts in Central Asia: a geochemical study of Triassic to Cretaceous magmatic rocks in the Gobi Altai (Mongolia), Lithos, 296, 297, 10.1016/j.lithos.2017.11.016
Soesoo, 2000, Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from Lachlan Fold Belt, Australia, J. Geol. Soc., 157, 135, 10.1144/jgs.157.1.135
Stepanov, 2014, The key role of mica during igneous concentration of tantalum, Contrib. Miner. Petrol., 167, 1, 10.1007/s00410-014-1009-3
Sun, 2008, Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic, Chem. Geol., 247, 352, 10.1016/j.chemgeo.2007.10.026
Sylvester, 1998, Post-collisional strongly peraluminous granites, Lithos, 45, 29, 10.1016/S0024-4937(98)00024-3
Sun, 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soci., London, Special Publ., 42, 313, 10.1144/GSL.SP.1989.042.01.19
Tadayon, 2017, The post-Eocene evolution of the Doruneh Fault region (central Iran): The intraplate response to the Reorganization of the Arabia-Eurasia collision zone, Tectonics, 36, 3038, 10.1002/2017TC004595
Tong, Y., 2006. Geochronology, Origin of the Late Paleozoic Granitoids from the Altai Orogen in China and Their Geological Significance. Chinese Academy of Geological Sciences, Beijing, China. Unpublished Ph. D. Thesis.
Tong, 2006, TIMS U-Pb zircon ages of Fuyun post-orogenic linear granite plutons on the southern margin of Altay orogenic belt and their implications, Acta Petrol. Mineral., 25, 85
Tong, 2006, Pb isotopic compositions of granitoids from the Altay Orogen (China): evidence for mantle-derived origin and continental growth, Acta Geol. Sin., 40, 517
Tong, 2014, Post-accretionary Permian granitoids in the Chinese Altai orogen: geochronology, petrogenesis and tectonic implications, Am. J. Sci., 314, 80, 10.2475/01.2014.03
Tong, 2014, Anticlockwise PT evolution at ~280 Ma recorded from ultrahigh-temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume?, J. Asian Earth Sci., 94, 1, 10.1016/j.jseaes.2014.07.043
Vervoort, 1999, Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system, Earth Planet. Sci. Lett., 168, 79, 10.1016/S0012-821X(99)00047-3
Wan, 2013, Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma, not from the Tarim mantle plume, Lithosphere, 5, 290, 10.1130/L261.1
Wang, 2005, Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhou granitic pluton from Chinese Altai Orogen: its implications for vertical continental growth, Acta Petrol. Sin., 21, 640
Wang, 2007, SHRIMP U-Pb Zircon geochronology of the Altai No. 3 Pegmatite, NW China, its implications for the origin and tectonic setting of the pegmatite, Ore Geol. Rev., 32, 325, 10.1016/j.oregeorev.2006.10.001
Wang, 2008, Increase of juvenal mantle-derived composition from syn-orogenic to post-orogenic granites of the east part of the east Tian Shan (China) and implications for continental vertical growth: Sr and Nd isotopic evidence, Acta Petrol. Sin., 24, 763
Wang, 2009, Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt, Lithos, 110, 359, 10.1016/j.lithos.2009.02.001
Wang, 2010, Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth: perspectives from Chinese Altay, Acta Petrol. Mineral., 29, 595
Wang, 2011, Geochemistry, zircon U-Pb ages and Hf isotopes of the Paleozoic volcanic rocks in the northwestern Chinese Altai: petrogenesis and tectonic implications, J. Asian Earth Sci., 42, 969, 10.1016/j.jseaes.2010.11.005
Wei, 2002, Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC-ICPMS, Geochimica, 31, 295
Whalen, 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Miner. Petrol., 95, 407, 10.1007/BF00402202
White, 1982, Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution, Nature, 296, 821, 10.1038/296821a0
Willner, 2009, Structural overprint of a late Paleozoic accretionary system in north-central Chile (34°–35°S) during post-accretional deformation, Andean Geol., 36, 17
Windley, 2002, Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution, J. Geol., 110, 719, 10.1086/342866
Windley, 2007, Tectonic models for accretion of the Central Asian Orogenic Belt, Journal of the Geological Society, 164, 31, 10.1144/0016-76492006-022
Wu, 2002, A-type granites in northeastern China: age and geochemical constraints on their petrogenesis, Chem. Geol., 187, 143, 10.1016/S0009-2541(02)00018-9
Wu, 2017, Highly fractionated granites: recognition and research, Sci. China Earth Sci., 60, 1201, 10.1007/s11430-016-5139-1
Xiao, 2004, Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia, J. Geol. Soc., 161, 339, 10.1144/0016-764903-165
Xue, 2010, The multi-periodic superimposed porphyry copper mineralization in Central Asian Tectonic Region: a case study of geology, geochemistry and chronology of Halasu copper deposit, Southeastern Altai, China, Earth Sci. Front., 17, 53
Yuan, 2007, Constraining the deposition time and tectonic background of the Habahe Group of the Altai, Acta Petrol. Mineral., 237, 1635
Yuan, 2007, Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids, Chem. Geol., 242, 22, 10.1016/j.chemgeo.2007.02.013
Yuan, 2011, Oceanic lithospheric mantle beneath the continental crust of the Chinese Altai, J. Geol. Soc., 168, 995, 10.1144/0016-76492010-058
Yu, 2017, Sr-Nd-Hf-Pb isotopic evidence for modification of the Devonian lithospheric mantle beneath the Chinese Altai, Lithos, 284, 207, 10.1016/j.lithos.2017.04.004
Yu, 2017, Whole-rock Nd–Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: constraints on the nature of the lower crust and tectonic setting, Gondwana Res., 47, 131, 10.1016/j.gr.2016.07.003
Zhang, 2010, A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume?, GSA Bull., 122, 2020, 10.1130/B30007.1
Zhang, 2012, Revisiting the ‘‘Irtish tectonic belt’’: implications for the Palaeozoic tectonic evolution of the Altai orogen, J. Asian Earth Sci., 52, 117, 10.1016/j.jseaes.2012.02.016
Zhang, 2014, Origin of Permian gabbroic intrusions in the southern margin of the Altai Orogenic belt: a possible link to the Permian Tarim mantle plume?, Lithos, 204, 112, 10.1016/j.lithos.2014.05.019
Zhang, 2018, Alternating trench advance and retreat: Insights from Paleozoic magmatism in the eastern Tianshan, Central Asian Orogenic Belt, Tectonics, 37, 2142, 10.1029/2018TC005051
Zhou, 2005, Discovery of metabasic rocks at the south side of mayinebo fault in the South Margin of Altay Mountains, Xinjiang, and its geological implications, Earth Sci.-J. China Univ. Geosci., 30, 738
Zindler, 1986, Chemical geodynamics, Annu. Rev. Earth Planet. Sci., 1, 493, 10.1146/annurev.ea.14.050186.002425