Tracing the Cambro-Ordovician ferrosilicic to calc-alkaline magmatic association in Iberia by in situ U–Pb SHRIMP zircon geochronology (Gredos massif, Spanish Central System batholith)
Tài liệu tham khảo
Abati, 2007, Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Paleozoic arc of NW Iberia revisited, Terra Nova, 19, 432, 10.1111/j.1365-3121.2007.00768.x
Abati, 1999, Early Ordovician orogenic event in Galicia (NW Spain): evidence from U–Pb ages in the uppermost unit of the Ordenes Complex, Earth Planet. Sci. Lett., 165, 213, 10.1016/S0012-821X(98)00268-4
Álvaro, 2008, Early Ordovician volcanism in the Iberian chains (NE Spain) and its influence on the preservation of shell concentrations, Bull. Soc. Geol. Fr., 6, 569, 10.2113/gssgfbull.179.6.569
Antunes, 2009, The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal), Lithos, 111, 168, 10.1016/j.lithos.2008.07.014
Arenas, 2007, The Vila de Cruces ophiolite: a remnant of the early Rheic Ocean in the Variscan suture of Galicia (northwest Iberian Massif), J. Geol., 115, 129, 10.1086/510645
Bea, 2013, Diffusion-induced disturbances of the U–Pb isotope system in pre-magmatic zircon and their influence on SIMS dating. A numerical study, Chem. Geol., 349–350, 1, 10.1016/j.chemgeo.2013.04.014
Bea, 1999, Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: a model for the generation of Variscan batholiths in Iberia, J. Geol., 107, 399, 10.1086/314356
Bea, 2006, A revised Ordovician age for the oldest magmatism of Central Iberia: U–Pb ion microprobe and LA-ICPMS dating of the Miranda do Douro orthogneiss, Geol. Acta, 4, 395
Bea, 2003, The nature, origin, and thermal influence of the granite source layer of Central Iberia, J. Geol., 111, 579, 10.1086/376767
Beetsma, 1995
Briggs, 1995
Capdevila, 1969
Capdevila, 1973, Les granitoides varisques de la mesete iberique, Bull. Soc. Geol. Fr., 15, 209, 10.2113/gssgfbull.S7-XV.3-4.209
Castiñeiras, 2010, REE-assisted U–Pb zircon age (SHRIMP) of an anatectic granodiorite: constraints on the evolution of the A Silva granodiorite, Iberian allochthonous complexes, Lithos, 116, 153, 10.1016/j.lithos.2010.01.013
Castiñeiras, 2008, SHRIMP U–Pb zircon dating of anatexis in high-grade migmatite complexes of central Spain: implications in the Hercynian evolution of Central Iberia, Int. J. Earth Sci., 97, 35, 10.1007/s00531-006-0167-6
Castro, 2013, Tonalite–granodiorite suites as cotectic systems: a review of experimental studies with applications to granitoid petrogenesis, Earth Sci. Rev., 124, 68, 10.1016/j.earscirev.2013.05.006
Castro, 2008, Magmatic implications of mantle wedge plumes: experimental study, Lithos, 103, 138, 10.1016/j.lithos.2007.09.012
Castro, 2002, Paleozoic magmatism, 117
Castro, 2003, The appinite–migmatite complex of sanabria, NW Iberian massif, Spain, J. Petrol., 44, 1309, 10.1093/petrology/44.7.1309
Castro, 2000, Experimental constraints on Hercynian Anatexis in the Iberian Massif, Spain, J. Petrol., 41, 1471, 10.1093/petrology/41.10.1471
Castro, 2009, Ordovician ferrosilicic magmas: experimental evidence for ultrahigh temperatures affecting a metagreywacke source, Gondwana Res., 16, 622, 10.1016/j.gr.2008.12.011
Castro, 2010, Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes. Implications for the origin of cordilleran-type batholiths, J. Petrol., 51, 1267, 10.1093/petrology/egq019
Castro, 2013, Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: a test of Taylor's andesite model, Gondwana Res., 23, 1554, 10.1016/j.gr.2012.07.004
Chappell, 1988, Origin of infracrustal (I-type) granite magmas, Trans. Roy. Soc. Edinb. Earth Sci., 79, 71, 10.1017/S0263593300014139
Chappell, 1974, Two contrasting granite types, Pac. Geol., 8, 173
Corretgé, 2001, Characteristics and significance of the experimental products from partial melting of rocks from the “Complejo Esquisto Grauváquico” at 3.5kbar, 191
Cummings, 1975, Ore lead isotope ratios in a continuously changing Earth, Earth Planet. Sci. Lett., 28, 155, 10.1016/0012-821X(75)90223-X
Debon, 1983, A chemical–mineralogical classification of common plutonic rocks and associations, Trans. R. Soc. Edinb. Earth Sci., 73, 135, 10.1017/S0263593300010117
Debon, 1988, A cationic classification of common plutonic rocks and their magmatic association: principles, method, application, Bull. Mineral., 111, 493
Dias da Silva, 2015, Magmatic evolution in the N-Gondwana margin related to the opening of the Rheic Ocean: evidence from the Upper Parautochthon of the Galicia-Trás-os-Montes Zone and from the Central Iberian Zone (NW Iberian Massif), Int. J. Earth Sci.
Dias da Silva, 2014, Structural and stratigraphical significance of U–Pb ages from the Mora and Saldanha volcanic complexes (NE Portugal, Iberian Variscides), Geol. Soc. Lond., Spec. Publ., 405, 115, 10.1144/SP405.3
Dias da Silva, Í., Díez Fernández, R., Díez-Montes, A., González Clavijo, E. and Foster, D.A., Magmatic evolution in the N-Gondwana margin related to the opening of the Rheic Ocean - Evidence from the Upper Parautochthon of the Galicia-Trás-os-Montes Zone and from the Central Iberian Zone (NW Iberian Massif), Int. J. Earth Sci. in press, http://dx.doi.org/10.1007/s00531-015-1232-9.
Díaz García, 2010, A peri-Gondwanan arc in NW Iberia. II: assessment of the intra-arc tectonothermal evolution through U–Pb SHRIMP dating of mafic dykes, Gondwana Res., 17, 352, 10.1016/j.gr.2009.09.010
Díaz-Alvarado, 2011, Assessing bulk assimilation in cordierite-bearing granitoids from the Central System batholith, Spain: experimental, geochemical and geochronological constraints, J. Petrol., 52, 223, 10.1093/petrology/egq078
Díaz-Alvarado, 2013, SHRIMP U–Pb zircon geochronology and thermal modeling of multilayer granitoid intrusions. Implications for the building and thermal evolution of the Central System batholith, Iberian Massif, Spain, Lithos, 175–176, 104, 10.1016/j.lithos.2013.05.006
Díaz-Alvarado, 2012, Fabric evidence for granodiorite emplacement with extensional shear zones in the Variscan Gredos massif (Spanish Central System), J. Struct. Geol., 42, 74, 10.1016/j.jsg.2012.06.012
Díez Fernández, 2012, Age constraints on Lower Paleozoic convection system: magmatic events in the NW Iberian Gondwana margin, Gondwana Res., 21, 1066, 10.1016/j.gr.2011.07.028
Díez Fernández, 2012, The onset of the assembly of Pangaea in NW Iberia: constraints on the kinematics of continental subduction, Gondwana Res., 22, 20, 10.1016/j.gr.2011.08.004
Díez Fernández, 2010, U–Pb ages of detrital zircons from the basal allochthonous units of NW Iberia: provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic, Gondwana Res., 18, 385, 10.1016/j.gr.2009.12.006
Díez Fernández, 2015, Peralkaline and alkaline magmatism of the Ossa–Morena zone (SW Iberia): age, source, and implications for the Paleozoic evolution of Gondwanan lithosphere, Lithosphere, 7, 73, 10.1130/L379.1
Díez Montes, 2010, Role of the Ollo de Sapo massive felsic volcanism of NW Iberia in the early ordovician dynamics of northern Gondwana, Gondwana Research, 17, 363, 10.1016/j.gr.2009.09.001
Escuder Viruete, 1998, Variscan syncollisional extension in the Iberian Massif: structural, metamorphic and geochronological evidence from the Somosierra sector of the Sierra de Guadarrama (Central Iberian Zone, Spain), Tectonophysics, 290, 87, 10.1016/S0040-1951(98)00014-6
Farias, 2014, U–Pb zircon SHRIMP evidence for Cambrian volcanism in the Schistose Domain within the Galicia-Trás-os-Montes Zone (Variscan Orogen, NW Iberian Peninsula), Geol. Acta, 12, 209
Fernández, 2008, Massive generation of atypical ferrosilicic magmas along the Gondwana active margin: implications for cold plumes and back-arc magma generation, Gondwana Res., 14, 451, 10.1016/j.gr.2008.04.001
Fernández-Suárez, 2003, Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: inferences from detrital zircon U–Pb ages, Terra Nova, 15, 138, 10.1046/j.1365-3121.2003.00479.x
Fuenlabrada, 2010, A peri-Gondwanan arc in NW Iberia. I: Isotopic and geochemical constraints on the origin of the arc—a sedimentary approach, Gondwana Res., 17, 338, 10.1016/j.gr.2009.09.007
García de Figuerola, 1966, Datos petrológicos de la Sierra de Gata (Cáceres), 7 (1), 53
Gerya, 2003, Rayleigh–Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones, Earth Planet. Sci. Lett., 212, 47, 10.1016/S0012-821X(03)00265-6
Gil Ibarguchi, 1978
Gutiérrez-Alonso, 2011, Diachronous post-orogenic magmatism within a developing orocline in Iberia, European variscides, Tectonics, 30, 10.1029/2010TC002845
Gutiérrez-Alonso, 2016, Was there a super-eruption on the Gondwanan coast 477Ma ago?, Tectonophysics, 10.1016/j.tecto.2015.12.012
Hacker, 2011, Differentiation of the continental crust by relamination, Earth Planet. Sci. Lett., 307, 501, 10.1016/j.epsl.2011.05.024
Heaman, 1990, The chemical composition of igneous zircon studies: implications for geochemical tracer studies, Geochim. Cosmochim. Acta, 54, 1597, 10.1016/0016-7037(90)90394-Z
Hernández Sampelayo, 1922
Holtz, 1987
Kretz, 1983, Symbols for rock-forming minerals, Am. Mineral., 68, 277
Ludwig, 2003, Isoplot 3.0 a geochronological toolkit for Microsoft Excel
Martínez Catalán, 2007, Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt, vol. 200, 403
Martínez Catalán, 2002, Thrust and detachment systems in the Órdenes Complex (northwestern Spain): implications for the Variscan–Appalachian geodynamics, vol. 364, 163
Martínez Catalán, 2004, Dominio del Ollo de Sapo: estructura, 75
Matte, 1991, Accretionary history and crustal evolution of the Variscan belt in Western Europe, Tectonophysics, 196, 309, 10.1016/0040-1951(91)90328-P
Miller, 2003, Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance, Geology, 31, 529, 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
Montero, 2009, Zircon geochronology of the Ollo de Sapo Formation and the age of the Cambro-Ordovician rifting in Iberia, J. Geol., 117, 174, 10.1086/595017
Montero, 2007, Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia, Geol. Mag., 144, 963, 10.1017/S0016756807003858
Montero, 2004, 55 million years of continuous antexis in Central Iberia: single-zircon dating of the Peña Negra Complex, J. Geol. Soc. Lond., 161, 255, 10.1144/0016-764903-024
Moreno-Ventas, 1995, The role of hybridization in the genesis of Hercynian granitoids in the Gredos massif, Spain: inferences from Sr–Nd isotopes, Contrib. Mineral. Petrol., 120, 137, 10.1007/BF00287111
Murphy, 2008, Probing crustal and mantle lithosphere origin through Ordovician volcanic rocks along the Iberian passive margin of Gondwana, Tectonophysics, 461, 166, 10.1016/j.tecto.2008.03.013
Nance, 2010, Evolution of the Rheic Ocean, Gondwana Res., 17, 194, 10.1016/j.gr.2009.08.001
Navidad, 1978
Navidad, 2010, Geochemical characterization and isotopic age of Caradocian magmatism in the northeastern Iberian Peninsula: insights into the Late Ordovician evolution of the northern Gondwana margin, Gondwana Res., 17, 325, 10.1016/j.gr.2009.11.013
Neiva, 2009, Geochemical and isotopic constraints on the petrogenesis of Early Ordovician granodiorite and Variscan two-mica granites from the Gouveia area, central Portugal, Lithos, 111, 186, 10.1016/j.lithos.2009.01.005
Parga Pondal, 1964, Introduction à la géologie de l'Ollo de Sapo, formation porphyroide anté-silurienne du Nord-Ouest de l'Espagne, 76, 119
Paterson, 2011, Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic, and thermal modeling studies, Geosphere, 7, 1439, 10.1130/GES00696.1
Pereira, 1993, Termobarometría de rocas con la asociación granate–cordierita-biotita; trayectorias P–T en el complejo anatéctico de la Peña Negra (Batolito de Ávila). Implicaciones sobre el metamorfismo hercínico en la Zona Centro Ibérica, Rev. Soc. Geol. Esp., 6, 131
Pereira, 1994, Cordierite-producing reactions in the Peña Negra complex, Avila batholith, Central Spain: the key role of cordierite in low-pressure anatexis, Can. Mineral., 32, 763
Pereira, 2014, Potential sources of Ediacaran strata of Iberia: a review, Geodin. Acta, 27, 1, 10.1080/09853111.2014.957505
Pereira, 2012, The provenance of Late Ediacaran and Early Ordovician siliciclastic rocks in the Southwest Central Iberian Zone: constraints from detrital zircon data on northern Gondwana margin evolution during the late Neoproterozoic, Precambrian Res., 192–195, 166, 10.1016/j.precamres.2011.10.019
Pin, 1992, Mantle-derived, early Paleozoic A-type metagranitoids from the NW Iberian Massif: Nd isotope and trace-element constraints, Bull. Soc. Geol. Fr., 163, 483
Rodríguez Alonso, 2004, Dominio del Complejo Esquisto-grauváquico. Estratigrafía. La secuencia litoestratigráfica del Neoproterozoico-Cámbrico Inferior, 78
Romão, 2010, The Mação-Penhascoso laccolith granite: age and implications (SW-Central Iberian Zone), e-Terra, 16, 1
Rubio-Ordóñez, 2012, An Early Ordovician tonalitic–granodioritic belt along the Schistose–Greywacke Domain of the Central Iberian Zone (Iberian Massif, Variscan Belt), Geol. Mag., 149, 927, 10.1017/S0016756811001129
Sánchez Martínez, 2012, The Bazar ophiolite of NW Iberia: a relic of the Iapetus–Tornquist Ocean in the Variscan suture, Terra Nova, 24, 283, 10.1111/j.1365-3121.2012.01061.x
Sánchez-García, 2010, Rift-related volcanism predating the birth of the Rheic Ocean (Ossa–Morena zone, SW Iberia), Gondwana Res., 17, 392, 10.1016/j.gr.2009.10.005
Solá, A.R., 2007. Relações Petrogeoquímicas dos Maciços Graníticos do NE Alentejano. Unpublished Ph.D. dissertation, Universidade de Coimbra, Portugal, 405pp.
Solá, 2005, Pb/Pb age of the Carrascal Massif, central Portugal, Geochim. Cosmochim. Acta, 69
Solá, 2008, New insights from U–Pb zircon dating of Early Ordovician magmatism on the northern Gondwana margin: the Urra Formation (SW Iberian Massif, Portugal), Tectonophysics, 461, 114, 10.1016/j.tecto.2008.01.011
Stampfli, 2002, A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons, Earth Planet. Sci. Lett., 196, 17, 10.1016/S0012-821X(01)00588-X
Talavera, 2009
Talavera, 2013, U–Pb zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia, Int. J. Earth Sci., 102, 1, 10.1007/s00531-012-0788-x
Ugidos, 1997, Geochemistry and petrology of recycled orogen-derived sediments: a case study from Upper Precambrian siliciclastic rocks of the Central Iberian Zone, Iberian Massif, Spain, Precambrian Res., 84, 163, 10.1016/S0301-9268(97)00023-5
Ugidos, 2001, Geochemistry of Precambrian–Cambrian sedimentary series in the Central Iberian Zone and geological implications: state of the art, 175
Ugidos, 1997, Provenance of Upper Precambrian–Lower Cambrian shales in the Central Iberian Zone, Spain: evidence from a chemical and isotopic study, Chem. Geol., 136, 55, 10.1016/S0009-2541(96)00138-6
Valladares, 2000, Upper Neoproterozoic–Lower Cambrian sedimentary successions in the Central Iberian Zone (Spain): sequence stratigraphy, petrology and chemostratigraphy. Implications for other European zones, Int. J. Earth Sci., 89, 2, 10.1007/s005310050314
Valverde-Vaquero, 2000, New U–Pb ages for Early Ordovician magmatism in central Spain, J. Geol. Soc. Lond., 157, 15, 10.1144/jgs.157.1.15
Valverde-Vaquero, 2005, U–Pb dating of Ordovician felsic volcanism in the schistose domain of the Galicia-Trás-os-Montes zone near Cabo Ortegal (NW Spain), Geol. Acta, 3, 27
van Staal, 1998, The Cambrian–Silurian tectonic evolution of the northern Appalachians and British Caledonides: history of a complex, best and southwest Pacific-type segment of Iapetus, vol. 143, 199
Villaseca, 2015, Early Ordovician metabasites from the Spanish Central System: a remnant of intraplate HP rocks in the Central Iberian Zone, Gondwana Res., 27, 392, 10.1016/j.gr.2013.10.007
Villaseca, 1999, Nature and composition of the lower continental crust in central Spain and the granulite–granite linkage: inferences from Granulitic xenoliths, J. Petrol., 40, 1463, 10.1093/petroj/40.10.1465
Villaseca, 2014, Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: implications for terrane analysis and Early Ordovician magmatic belts, Precambrian Res., 245, 131, 10.1016/j.precamres.2014.02.006
Vogt, 2012, Crustal growth at active continental margins: numerical modeling, Phys. Earth Planet. Inter., 192-193, 1, 10.1016/j.pepi.2011.12.003
Wang, 2011, U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients, Acta Geol. Sin., 85, 164, 10.1111/j.1755-6724.2011.00387.x
Williams, 1998, U–Th–Pb geochronology by ion microprobe, 7, 1
Williams, 2001, Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia, Aust. J. Earth Sci., 48, 557, 10.1046/j.1440-0952.2001.00883.x
Williams, 1987, Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides, II ion microprobe zircon U–Th–Pb, Contrib. Mineral. Petrol., 97, 205, 10.1007/BF00371240
Winchester, 2002, Palaeozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations, 201, 1
Yenes, 1999, Granite emplacement in orogenic compressional conditions: the La Alberca–Béjar granitic area (Spanish Central System, Variscan Iberian Belt), J. Struct. Geol., 21, 1419, 10.1016/S0191-8141(99)00104-2
Zeck, 2004, A sequence of Pan-African and Hercynian events recorded in zircons from an orthogneiss from the Hercynian Belt of Western Central Iberia—an ion microprobe U–Pb study, J. Petrol., 45, 1613, 10.1093/petrology/egh026