Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation

Nature - Tập 439 Số 7075 - Trang 484-489 - 2006
Mitsuhiro Watanabe1, Sander M. Houten1, Chikage Mataki1, Marcelo A. Christoffolete2, Brian W. Kim2, Hiroyuki Sato1, Nadia Messaddeq1, John W. Harney2, Osamu Ezaki3, Tatsuhiko Kodama4, Kristina Schoonjans1, Antônio C. Bianco2, Johan Auwerx5
1Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404, Illkirch, France
2Department of Medicine, Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Massachusetts, 02115, Boston, USA
3Division of Clinical Nutrition, National Institute of Health and Nutrition, 1-23-1 Toyama, 162-8636, Shinjuku-ku, Tokyo, Japan
4Laboratory for Systems Biology and Medicine, RCAST, University of Tokyo, 153-8904, Tokyo, Japan
5Institut Clinique de la Souris, 67404 Illkirch, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gupta, S., Stravitz, R. T., Dent, P. & Hylemon, P. B. Down-regulation of cholesterol 7α-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J. Biol. Chem. 276, 15816–15822 (2001)

Qiao, L. et al. Bile acid regulation of C/EBPβ, CREB, and c-Jun function, via the extracellular signal-regulated kinase and c-Jun NH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes. Mol. Cell. Biol. 23, 3052–3066 (2003)

Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003)

Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002)

Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999)

Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999)

Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999)

Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000)

Lu, T. T. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6, 507–515 (2000)

Watanabe, M. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113, 1408–1418 (2004)

Ikemoto, S. et al. Cholate inhibits high-fat diet-induced hyperglycemia and obesity with acyl-CoA synthetase mRNA decrease. Am. J. Physiol. 273, 37–45 (1997)

Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002)

Holt, J. A. et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 17, 1581–1591 (2003)

Christoffolete, M. A. et al. Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes 53, 577–584 (2004)

de Jesus, L. A. et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J. Clin. Invest. 108, 1379–1385 (2001)

Hinuma, S. et al. Screening method (method for the screening of agonists or antagonists of TGR5). Japanese patent 2003–380574 (P2005–21151A (JP)). 2005.

Canani, L. H. et al. The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 90, 3472–3478 (2005)

Mentuccia, D. et al. Association between a novel variant of the human type 2 deiodinase gene Thr92Ala and insulin resistance: evidence of interaction with the Trp64Arg variant of the beta-3-adrenergic receptor. Diabetes 51, 880–883 (2002)

Cohen, D. E. in Hepatology: A Textbook of Liver Disease (eds Zakim, D. & Boyer, T. D.) 1713–1743 (Saunders, Philadelphia, 2003)

Everson, G. T. Steady-state kinetics of serum bile acids in healthy human subjects: single and dual isotope techniques using stable isotopes and mass spectrometry. J. Lipid Res. 28, 238–252 (1987)

Fain, J. N., Reed, N. & Saperstein, R. The isolation and metabolism of brown fat cells. J. Biol. Chem. 242, 1887–1894 (1967)

Branco, M., Ribeiro, M., Negrao, N. & Bianco, A. C. 3,5,3′-Triiodothyronine actively stimulates UCP in brown fat under minimal sympathetic activity. Am. J. Physiol. 276, E179–E187 (1999)

Picard, F. et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931–941 (2002)

Curcio, C. et al. The human type 2 iodothyronine deiodinase is a selenoprotein highly expressed in a mesothelioma cell line. J. Biol. Chem. 276, 30183–30187 (2001)

Sakakura, H. et al. Simultaneous determination of bile acids in rat bile and serum by high-performance liquid chromatography. J. Chromatogr. 621, 123–131 (1993)