Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset

Shari Van Wittenberghe1, Jochem Verrelst2, Juan Pablo Rivera2, Luis Alonso2, José Moreno2, Roeland Samson1
1Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
2Image Processing Laboratory, University of Valencia, C/Catedrático José Beltrán 2, E-46980 Paterna (Valencia), Spain

Tài liệu tham khảo

Sims, 2002, Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Rem. Sens. Environ., 81, 337, 10.1016/S0034-4257(02)00010-X Peñuelas, 1993, The reflectance at the 950–970nm region as an indicator of plant water status, Int. J. Rem. Sens., 14, 1887, 10.1080/01431169308954010 Seelig, 2008, The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared, Int. J. Rem. Sens., 29, 3701, 10.1080/01431160701772500 Ourcival, 1999, Exploring the relationships between reflectance and anatomical and biochemical properties in Quercus ilex leaves, New Phytol., 143, 351, 10.1046/j.1469-8137.1999.00456.x Curran, 2001, Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies, Rem. Sens. Environ., 76, 349, 10.1016/S0034-4257(01)00182-1 Fourty, 1996, Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems, Rem. Sens. Environ., 56, 104, 10.1016/0034-4257(95)00234-0 Jacquemoud, 1996, Estimating leaf biochemistry using the PROSPECT leaf optical properties model, Rem. Sens. Environ., 56, 194, 10.1016/0034-4257(95)00238-3 Gitelson, 2003, Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves, J. Plant Physiol., 160, 271, 10.1078/0176-1617-00887 le Maire, 2008, Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass, Rem. Sens. Environ., 112, 3846, 10.1016/j.rse.2008.06.005 Wang, 2012, Hyperspectral indices for estimating leaf biochemical properties in temperate deciduous forests: comparison of simulated and measured reflectance data sets, Ecol. Ind., 14, 56, 10.1016/j.ecolind.2011.08.021 J.W. Rouse Jr, R.H. Haas, J.A. Schell, D.W. Deering, Monitoring vegetation systems in the Great Plains with ERTS, in: Third ERTS Symposium, vol. 1, Washington, DC, NASA SP-351, 1973, pp. 309–317. Gitelson, 1994, Quantitative estimation of chlorophyll-a using reflectance spectra – experiments with autumn chestnut and maple leaves, J. Photochem. Photobiol. B – Biol., 22, 247, 10.1016/1011-1344(93)06963-4 Gitelson, 1996, Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll, J. Plant Physiol., 148, 494, 10.1016/S0176-1617(96)80284-7 Buschmann, 2007, Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves, Photosynth. Res., 92, 261, 10.1007/s11120-007-9187-8 Gitelson, 1999, The chlorophyll fluorescence ratio F-735/F-700 as an accurate measure of the chlorophyll content in plants, Rem. Sens. Environ., 69, 296, 10.1016/S0034-4257(99)00023-1 D’ambrosio, 1992, Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown, Radiat. Environ. Biophys., 31, 51, 10.1007/BF01211512 Van Wittenberghe, 2013, Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia, Environ. Pollut., 173, 29, 10.1016/j.envpol.2012.10.003 Schaepman, 2009, Earth system science related imaging spectroscopy – an assessment, Rem. Sens. Environ., 113, S123, 10.1016/j.rse.2009.03.001 Ollinger, 2011, Sources of variability in canopy reflectance and the convergent properties of plants, New Phytol., 189, 375, 10.1111/j.1469-8137.2010.03536.x Baret, 2008, Estimating canopy characteristics from remote sensing observations – review of methods and associated problems, 172 Verrelst, 2012, Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3, Rem. Sens. Environ., 118, 127, 10.1016/j.rse.2011.11.002 Hastie, 2009 Rasmussen, 2006 Camps-Valls, 2009, Biophysical parameter estimation with adaptive Gaussian processes, IEEE Int. Geosci. Rem. Sens. Symp., 1–5, 2449 Verrelst, 2012, Retrieval of vegetation biophysical parameters using Gaussian process techniques, IEEE Trans. Geosci. Rem. Sens., 50, 1832, 10.1109/TGRS.2011.2168962 Van Wittenberghe, 2014, A field study on solar-induced chlorophyll and pigment parameters along a vertical canopy gradient of four tree species in an urban environment, Sci. Total Environ., 466–467, 185, 10.1016/j.scitotenv.2013.07.024 Van Wittenberghe, 2012, Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient, Trees-Struct. Funct., 26, 1427, 10.1007/s00468-012-0714-7 Delegido, 2014, Chlorophyll content mapping of urban vegetation in the city of Valencia based on the hyperspectral NAOC index, Ecol. Ind., 40, 34, 10.1016/j.ecolind.2014.01.002 Alonso, 2007, Sensitivity analysis of the Fraunhofer Line Discrimination method for the measurement of chlorophyll fluorescence using a field spectroradiometer, IEEE Int. Geosci. Rem. Sens. Symp., 1–12, 3756 Verrelst, 2012, Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data, Rem. Sens., 4, 2866, 10.3390/rs4092866 Rivera, 2014, Toward a semiautomatic machine learning retrieval of biophysical parameters, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. Mariotto, 2013, Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission, Rem. Sens. Environ., 139, 291, 10.1016/j.rse.2013.08.002 Thenkabail, 2011, Advances in hyperspectral remote sensing of vegetation and agricultural crops, 3 Knudby, 2010, Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques, Rem. Sens. Environ., 114, 1230, 10.1016/j.rse.2010.01.007 Thenkabail, 2004, Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications, Rem. Sens. Environ., 91, 354, 10.1016/j.rse.2004.03.013 Elvidge, 1990, Visible and near-infrared reflectance characteristics of dry plant materials, Int. J. Rem. Sens., 11, 1775, 10.1080/01431169008955129 Filella, 1994, The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status, Int. J. Rem. Sens., 15, 1459, 10.1080/01431169408954177 Hansen, 2003, Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression, Rem. Sens. Environ., 86, 542, 10.1016/S0034-4257(03)00131-7 Yoder, 1995, Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500nm) at leaf and canopy scales, Rem. Sens. Environ., 53, 199, 10.1016/0034-4257(95)00135-N Cho, 2006, A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method, Rem. Sens. Environ., 101, 181, 10.1016/j.rse.2005.12.011 Clevers, 2013, Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3, Int. J. Appl. Earth Obs. Geoinf., 23, 344, 10.1016/j.jag.2012.10.008 Stjacques, 1991, Determining leaf nitrogen concentration of broadleaf tree seedlings by reflectance measurements, Tree Physiol., 8, 391, 10.1093/treephys/8.4.391 Chapin, 1983, Seasonal-changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees, Ecology, 64, 376, 10.2307/1937083 Johnson, 2001, Nitrogen influence on fresh-leaf NIR spectra, Rem. Sens. Environ., 78, 314, 10.1016/S0034-4257(01)00226-7 Grossman, 1996, Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data, Rem. Sens. Environ., 56, 182, 10.1016/0034-4257(95)00235-9 Fourty, 1998, On spectral estimates of fresh leaf biochemistry, Int. J. Rem. Sens., 19, 1283, 10.1080/014311698215441 Lichtenthaler, 1990, The chlorophyll fluorescence ratio F690/F730 in leaves of different chlorophyll content, Photosynth. Res., 25, 295, 10.1007/BF00033170 Hák, 1990, Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves, Radiat. Environ. Biophys., 29, 329, 10.1007/BF01210413 Horler, 1983, The red edge of plant leaf reflectance, Int. J. Rem. Sens., 4, 273, 10.1080/01431168308948546 Apostol, 2003, Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants, Can. J. Rem. Sens., 29, 57, 10.5589/m02-076 Buschmann, 2000, Imaging of the blue, green, and red fluorescence emission of plants: an overview, Photosynthetica, 38, 483, 10.1023/A:1012440903014 Langsdorf, 2000, Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation, Photosynthetica, 38, 539, 10.1023/A:1012409423487 Campbell, 2007, Assessment of vegetation stress using reflectance or fluorescence measurements, J. Environ. Qual., 36, 832, 10.2134/jeq2005.0396 Agati, 2013, Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses, Eur. J. Agron., 45, 39, 10.1016/j.eja.2012.10.011