Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications

L.E. Murr1, S.A. Quinones2, S.M. Gaytan1, M.I. Lopez1, A. Rodela1, E.Y. Martinez1, D.H. Hernandez1, E. Martinez1, F. Medina3, R.B. Wicker3
1Department of Metallurgical and Materials Engineering University of Texas at El Paso, El Paso, TX 79968 USA
2Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
3Department of Mechanical Engineering and Keck Center for 3D Innovation, University of Texas at El Paso, El Paso, TX 79968, USA

Tài liệu tham khảo

Akmoulin, 1994, Dynamic fracture toughness of Ti–6Al–4V alloy with various stabilities of β phase, Metall. Trans. A, 25A, 1655, 10.1007/BF02668531 Akahori, 2000, Effects of thermochemical treatment on properties of cast Ti-6Al-7Nb alloy for dental applications, J. Japan Inst. Met., 64, 895, 10.2320/jinstmet1952.64.10_895 Barreda, 2001, Electron beam welded high thickness Ti–6Al–4V plates using filler metal of similar and different composition to the base plate, Vacuum., 62, 143, 10.1016/S0042-207X(00)00454-1 Christensen, A., 2007. Qualifying EBM for production of Ti6Al-4V medial implants in the US. EBM User Group Meeting. Simi Valley, CA (November 15, 2007) Christensen, A., Lippincott, A., Kircher, R., 2007. Qualification of electron beam melted (EBM) Ti–6Al–4V-ELI for orthopaedic implant applications. Medical Modeling LLC–Technical Report Chuna, 2003 Cormier, 2004, Characterization of H13 steel produced via electron beam melting, Rapid Prototyping J., 10, 35, 10.1108/13552540410512516 Destefani, 1990, vol. 2, 586 Ding, 2002, Microstructure evolution of a Ti–6Al–4V alloy during thermomechanical processing, Mater. Sci. Engng. A, 327, 233, 10.1016/S0921-5093(01)01531-3 Eufinger, 2001, Computer-assisted prefabrication of individual craniofacial implants, AORH J., 74, 648, 10.1016/S0001-2092(06)61763-8 Eylon, 1990, vol. 2, 647 Eylon, 1990, vol. 2, 634 Froes, 2004, The Technologies of titanium powder metallurgy, JOM November, 46, 10.1007/s11837-004-0252-x 2005 Harrysson, 2005, Direct fabrication of custom orthopaedic implants using electron beam melting technology, 191 Hiemenz, 2007, Electron beam melting, Adv. Mater. Processes, 165, 45 Iman, 1983, Fatigue and microstructural properties of quenched Ti–6Al–4V, Metall. Trans. A, 14A, 233, 10.1007/BF02651620 Krishna, 2008, engineered porous metals for implants, JOM May, 45, 10.1007/s11837-008-0059-2 Lampman, 1990, vol. 2, 592 Leutjering, 2003 Long, 1998, Titanium alloys in total joint replacement–a materials science perspective, Biomaterials, 19, 1621, 10.1016/S0142-9612(97)00146-4 Murr, 1991 Murr, L.E., et al. 2008. Microstructures and mechanical properties of electron beam–rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater. Characterization (in press) Niinomi, 1995, Mechanical properties and fracture characteristics of Ti–6Al–4V and Ti-5Al-2.5 Fe with refined microstructure using hydrogen, Metall. Mater. Trans. A, 26A, 1141, 10.1007/BF02670611 Niinomi, 1998, Mechanical properties of biomedical titanium alloys, Mater. Sci. Engng., A243, 231, 10.1016/S0921-5093(97)00806-X Niinomi, 2001, Recent metallic materials for biomedical applications, Met. Mater. Trans. A, 32A, 477 Niinomi, 2007, Recent research and development in metallic materials for biomedical, dental and healthcare products, Mater. Sci. Forum., 539–543, 193, 10.4028/www.scientific.net/MSF.539-543.193 Niinomi, 2008, Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behavior Biomed. Mater., 1, 30, 10.1016/j.jmbbm.2007.07.001 Niinomi, 1990, The effect of deformation-induced transformation on the fracture toughness of commercial titanium alloys, Metall. Trans. A, 21A, 1733, 10.1007/BF02672590 Niinomi, 1993, Fatigue crack propagation in Ti–6Al–4V alloys, vol. 92, 1835 Oh, 2003, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Mater., 49, 1197, 10.1016/j.scriptamat.2003.08.018 Sakaguchi, 2004, Deformation behaviors of Ti-Nb-Ta-Zr system alloys for biomedical applications, Mater. Trans., 45, 1113, 10.2320/matertrans.45.1113 Song, 1999, Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys, Mater. Sci. Engng., A260, 269, 10.1016/S0921-5093(98)00886-7 Vandenbroucke, 2007, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping J., 13, 196, 10.1108/13552540710776142 Williams, 1980, The effect of slip length and slip character on the properties of titanium alloys, Titanium 80, Science and Technology, 1, 671 Williams, J.C., Chesnutt, J.C., Thompson, A.W., 1987. The effects of microstructure on ductility and fracture toughness of alpha + beta titanium alloys. Microstructure, Fracture Toughness and Fatigue Crack Growth Rate in Titanium Alloys. Denver, Colorado USA, February, pp. 255–271 2004