Optic flow estimation on trajectories generated by bio-inspired closed-loop flight

Springer Science and Business Media LLC - Tập 104 Số 4-5 - Trang 339-350 - 2011
Patrick A. Shoemaker1, Andrew Hyslop2,3, J. Sean Humbert2
1Tanner Research, Inc., 825 South Myrtle Ave., 91016, Monrovia, CA, USA#TAB#
2Department of Aerospace Engineering, University of Maryland, College Park, USA
3Emergent Space Technologies, Greenbelt, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2: 284–299

Barnett PD, Nordström K, O’Carroll D (2010) Motion adaptation and the velocity coding of natural scenes. Curr Biol 20: 994–999

Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188: 419–437

Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive neurons. J Comput Neurosci 2: 5–18

Borst A, Haag J, Reiff D (2010) Fly motion vision. Annu Rev Neurosci 33: 49–70

Bouguet J-Y (1999) Pyramidal implementation of the Lucas– Kanade feature tracker. OpenCV documentation. Microprocessor Research Lab, Intel Corporation, Santa Clara, CA

Clifford CWG, Ibbotson MR (2003) Fundamental mechanisms of visual motion detection: models, cells and functions. Prog Neurobiol 68: 409–437

Clifford CWG, Langley K (1996) A model of temporal adaptation in fly motion vision. Vis Res 36: 2595–2608

Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J Comp Physiol A 99: 1–66

Dahmen HJ, Franz MO, Krapp HG (2001) Extracting egomotion from optic flow: limits of accuracy and neural matched filters. In: Zanker J, Zeil J (eds) Motion vision—computational, neural and ecological constraints. Springer, Berlin, pp 143–168

Dickson WB, Straw AD, Dickinson MH (2008) Integrative model of Drosophila flight. AIAA J 46: 2150–2164

Dror RO, O’Carroll DC, Laughlin SB (2001) Accuracy of velocity estimation by Reichardt correlators. J Opt Soc Am A 18: 241–252

Egelhaaf M, Borst A (1993) Movement detection in arthropods. In: Miles FA, Wallman J (eds) Visual motion in the stabilization of gaze. Elsevier, Amsterdam, pp 3–27

Egelhaaf M, Borst A, Reichardt W (1989) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. J Opt Soc Am A 6: 1070–1087

Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha A (2002) Neural encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci 25: 96–102

Franceschini N, Riehle A, Le Nestour A (1989) Directionally selective motion detection by insect neurons. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer-Verlag, Berlin, pp 360–390

Franz MO, Krapp HG (2000) Wide-field, motion sensitive neurons and matched filters for optic flow fields. Biol Cybern 83: 185–197

Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free flight maneuvers in Drosophila. Science 300: 495–498

Grosse I (1996) Estimating entropies from finite samples. In: Freund JA (eds) Dynamik—evolution—strukturen. Verlag Dr. Köster, Berlin

Haag J, Denk W, Borst A (2004) Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proc Natl Acad Sci USA 101: 16333–16338

Harris RA, O’Carroll DC, Laughlin SB (1999) Adaptation and the temporal filter of fly motion detectors. Vis Res 39: 2603–2613

Harris RA, O’Carroll DC, Laughlin SB (2000) Contrast gain reduction in fly motion adaptation. Neuron 28: 595–606

Hassenstein B, Reichardt W (1956) Systemtheoretische analyse der Zeit-, Reihenfolgen-, und Vorseichenauswertung bei der Berwegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11: 513–524

Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol Cybern 45: 143–156

Hausen K (1982) Motion-sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46: 67–79

Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer-Verlag, Berlin, pp 391–424

Herzel H, Grosse I (1995) Measuring correlations in symbols sequences. Physica A 216: 518–542

Hesselberg T, Lehmann FO (2007) Turning behavior depends on frictional damping in the fruit fly Drosophila. J Exp Biol 210: 4319–4334

Humbert JS, Hyslop AM (2010) Bio-inspired visuomotor convergence. IEEE Trans Robot 26: 121–130

Hyslop AM, Krapp HG, Humbert JS (2010) Control theoretic interpretation of directional motion preferences in optic flow processing interneurons. Biol Cybern 95(5): 413–430

Kirschfeld K (1991) An optomotor control system with automatic compensation for contrast and texture. Proc R Soc Lond B0 246: 261–268

Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Biol Cybern 56: 247–254

Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79: 1902–1917

Laughlin SB (1976) Neural integration in the first optic neuropile in dragonflies. IV. Interneuron spectral sensitivity and contrast enconding. J Comp Physiol 112: 199–211

Laughlin S (1984) The roles of parallel channels in early visual processing by the arthropod compound eye. In: Ali MA (eds) Photoreception and vision in invertebrates. Plenum Press, New York, pp 457–481

Lipetz LE (1971) The relation of physiological and psychological aspects of sensory intensity. In: Loewenstein WR (eds) Handbook of sensory physiology. Springer, Berlin, Heidelberg, New York, pp 192–225

Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th international joint conference on artificial intelligence, Canada, pp 674–679

Maddess T, Laughlin SB (1985) Adaptation of the motion sensitive neuron H1 is generated locally and governed by contrast frequency. Proc R Soc Lond B 225: 251–275

McCarthy C, Barnes N (2004) Performance of optical flow techniques for indoor navigation with a mobile robot. In: Proceedings of IEEE international conference on robots & automation, New Orleans, LA, pp 5093–5098

Naka KI, Rushton WAH (1966) S-potentials from luminosity units in retina of fish (Cyprinidae). J Physiol (Lond) 185: 587–599

Reiser MB, Humbert JS, Dunlop MJ, del Vecchio D, Murray RM, Dickinson MH (2004) Vision as a compensatory mechanism for disturbance rejection in upwind flight. Proc Am Control Conf 1: 311–316

Rind FC (1996) Intracellular characterization of neurons in the locust brain signaling impending collision. J Neurophysiol 75: 986–995

Shoemaker PA, O’Carroll DC, Straw AD (2005) Velocity constancy and models for wide-field motion detection in insects. Biol Cybern 93: 275–287

Srinivasan MV, Guy RG (1990) Spectral properties of movement perception in the dronefly Eristalis. J Comp Physiol A 166: 287–295

Srinivasan M, Zhang SW (2004) Visual motor computations in insects. Annu Rev Neurosci 27: 679–696

Srinivasan MV, Zhang SW, Chandrashekara K (1993) Evidence for two distinct movement-detecting mechanisms in insect vision. Naturwissenschaften 80: 38–41

Srinivasan MV, Zhang SW, Lehrer M, Collet TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199: 237–244

Straw AD, Rainsford T, O’Carroll D (2008) Contrast sensitivity of insect motion detection to natural images. J Vis 8: 1–9

Tolhurst DJ, Tadmor Y, Chao T (1992) Amplitude spectra of natural images. Ophthalmol Physiol Opt 12: 229–232

van Santen JPH, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am 1: 451–473

Wolf-Oberhollenzer F, Kirschfeld K (1994) Motion sensitivity in the nucleus of the basal optic root of the pigeon. J Neurophysiol 71: 1559–1573