Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors

Parasitology Research - Tập 117 - Trang 377-389 - 2017
Dinesh Kumar1, Gaurav Kumar2, Veena Agrawal1
1Department of Botany, University of Delhi, Delhi, India
2National Institute of Malaria Research, New Delhi, India

Tóm tắt

The present study was carried out to evaluate the larvicidal potential of methanol, hexane, acetone, chloroform, and aqueous bark extracts of Holarrhena antidysenterica (L.) Wall. and silver nanoparticles (AgNPs) synthesized using aqueous bark extract against the third instar larvae of Aedes aegypti L. and Culex quinquefasciatus Say. AgNPs were prepared by adding 10 ml of aqueous bark extract in 90 ml of 1 mM silver nitrate (AgNO3) solution. After 5 min of mixing, a change in color from yellow to dark brown occurred indicating the synthesis of AgNPs. Their further characterization was done through ultraviolet-visible spectroscopy (UV–Vis), X-ray diffraction analysis (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). UV–Vis spectrum of synthesized AgNPs showed a maximum absorption peak at 420 nm wavelength. Crystalline nature of AgNPs was confirmed by the presence of characteristic Bragg reflection peaks in XRD pattern. TEM images have shown that most of the AgNPs were spherical in shape with an average size of 32 nm. FT-IR spectrum of AgNPs showed prominent absorbance peaks at 1012.2 (C–O) and 3439.44 cm−1 (O–H) which represent the major constituents of phenolics, terpenoids, and flavonoids compounds. LC-MS analysis of the bark extract confirmed the presence of carbonyl and hydroxyl functional groups which were directly correlated with FT-IR results. These AgNPs were assayed against different mosquito vectors, and the maximum mortality was recorded against the larvae of A. aegypti with LC50 and LC90 values being 5.53 and 12.01 ppm, respectively. For C. quinquefasciatus, LC50 and LC90 values were 9.3 and 19.24 ppm, respectively, after 72 h of exposure. Bark extracts prepared in different solvents such as methanol, chloroform, hexane, acetone, and water showed moderate larvicidal activity against A. aegypti their respective LC50 values being 71.74, 94.25, 102.25, 618.82, and 353.65 ppm and LC90 values being 217.36, 222.24, 277.82, 1056.36, and 609.37 ppm. For C. quinquefasciatus, their LC50 values were 69.43, 112.39, 73.73, 597.74, and 334.75 ppm and LC90 values of 170.58, 299.76, 227.48, 1576.98, and 861.45 ppm, respectively, after 72 h of treatment. AgNPs proved to be nontoxic against the non-target aquatic organism, Mesocyclops thermocyclopoides Harada when exposed for 24, 48, and 72 h. The results showed that bark extract-derived AgNPs have extremely high larvicidal potential compared to other organic solvents as well as aqueous bark extract alone. These AgNPs, therefore, can be used safely for the control of dengue and filarial vectors that cause severe human health hazards.

Tài liệu tham khảo

Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28(4):313–318. https://doi.org/10.1016/S0927-7765(02)00174-1 Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles and Culex larvae (Diptera: Culicidae). Parasitol Res 99(4):466–472. https://doi.org/10.1007/s00436-006-0182-3 Aromal AS, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 97:1–5. https://doi.org/10.1016/j.saa.2012.05.083 Azarudeen RMST, Govindarajan M, AlShebly MM, AlQahtani FS, Amsath A, Senthilmurugan S, Vijayan P, Benelli G (2017) Size-controlled biofabrication of silver nanoparticles using the Merremia emarginata leaf extract: toxicity on Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) and non-target mosquito predators. J Asia Pac Entomol 20(2):359–366. https://doi.org/10.1016/j.aspen.2017.02.007 Azarudeen RMST, Govindarajan M, Amsath A, Kadaikunnan S, Alharbi NS, Vijayan P, Muthukumaran U, Benelli G (2016) Size-controlled fabrication of silver nanoparticles using the Hedyotis puberula leaf extract: toxicity on mosquito vectors and impact on biological control agents. RSC Adv 6(99):96573–96583. https://doi.org/10.1039/C6RA23208F Ballottin D, Fulaz S, Souza ML, Corio P, Rodrigues AG, Souza AO, Gaspari PM, Gomes AF, Gozzo F, Tasic L (2016) Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Res Lett 11(1):313–322. https://doi.org/10.1186/s11671-016-1538-y Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115(1):23–34. https://doi.org/10.1007/s00436-015-4800-9 Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer – a brief review. Enzym Microb Technol 95:58–68. https://doi.org/10.1016/j.enzmictec.2016.08.022 Benelli G (2018) Gold nanoparticles–against parasites and insect vectors. Acta Trop 178:73–80. https://doi.org/10.1016/j.actatropica.2017.10.021 Benelli G, Beier JC (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96. https://doi.org/10.1016/j.actatropica.2017.06.028 Benelli G, Govindarajan M (2017) Green-synthesized mosquito oviposition attractants and ovicides: towards a nanoparticle-based "lure and kill" approach? J Clust Sci 28(1):287–308. https://doi.org/10.1007/s10876-016-1088-6 Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754. https://doi.org/10.1007/s00436-016-4971-z Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28(1):3–10. https://doi.org/10.1007/s10876-016-1131-7 Chandramohan B, Murugan K, Panneerselvam C, Madhiyazhagan P, Chandirasekar R, Dinesh D, Kumar PM, Kovendan K, Suresh U, Subramaniam J, Rajaganesh R (2016) Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies. Parasitol Res 115:1015–1025 Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583. https://doi.org/10.1021/bp0501423 Chung M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11(1):40–54. https://doi.org/10.1186/s11671-016-1257-4 Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114(4):1519–1529. https://doi.org/10.1007/s00436-015-4336-z Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44(16):5778–5792. https://doi.org/10.1039/C4CS00363B Elumalai D, Kaleena PK, Ashok K, Suresh A, Hemavathi M (2016) Green synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Engineering in Agriculture, Environment and Food 9:1–8 Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–666. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 Finney DJ (1971) Probit Analysis. Cambridge University Press, London, pp 68–72 Firoozi S, Jamzad M, Yari M (2016) Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia CA Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity. Journal of nanostructure inChemistry 6:357–364 Foldbjerg R, Jiang X, Miclăus T, Chunying C, Autrup H, Beer C (2015) Silver nanoparticles-wolves in sheep’s clothing? Toxicol Res 4(3):563–575. https://doi.org/10.1039/C4TX00110A Govindarajan M, Benelli G (2016) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6(64):59021–59029. https://doi.org/10.1039/C6RA10228J Govindarajan M, Benelli G (2017) A facile one-pot synthesis of eco- friendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J Clust Sci 28(1):15–36. https://doi.org/10.1007/s10876-016-1035-6 Govindarajan M, Rajeswary M, Veerakumar K, Hoti SL, Mehlhorn H, Barnard DR, Benelli G (2016) Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 115(2):723–733. https://doi.org/10.1007/s00436-015-4794-3 Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104. https://doi.org/10.1088/0957-4484/18/10/105104 Jinu U, Rajakumaran S, Senthil-Nathan S, Geetha N, Venkatachalam P (2017) Potential larvicidal activity of silver nanohybrids synthesized using leaf extracts of Cleistanthus collinus (Roxb.) Benth. Ex Hook. f. And Strychnos nuxvomica L. nuxvomica against dengue, chikungunya and Zika vectors. Physiol Mol Plant Pathol 0:1–9 Kalimuthu K, Panneerselvam C, Chou C, Lin SM, Tseng LC, Tsai KH, Murugan K, Hwang JS (2017a) Predatory efficiency of the copepod Megacyclops formosanus and toxic effect of the red alga Gracilaria firma-Synthesized Silver nanoparticles against the dengue vector Aedes aegypti. Hydrobiologia 785(1):359–372. https://doi.org/10.1007/s10750-016-2943-z Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G (2017b) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-Synthesized Silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot 109:82–96. https://doi.org/10.1016/j.psep.2017.03.027 Kalimuthu K, Panneerselvam C, Murugan K, Hwang JS (2013) Green synthesis of silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J Entomol Acarol Res 45(2):11. https://doi.org/10.4081/jear.2013.e11 Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163–1171. https://doi.org/10.1007/s00436-008-1306-8 Khan A, Bashir S, Gilani AH (2012a) An In vivo study on the diuretic activity ofHolarrhena antidysenterica. Afr J Pharm Pharmacol 6:454–458 Khan A, Khan SR, Gilani AH (2012b) Studies on the in vitro and in vivo antiurolithic activity of Holarrhena antidysentery. Urol Res 40(6):671–681. https://doi.org/10.1007/s00240-012-0483-1 Kong H, Jang J (2006) One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem Commun 28:3010–3012 Kumar VA, Ammani K, Jobina R, Subhaswaraj P, Siddhardha B (2017) Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. J Photochem Photobiol B 171:1–8. https://doi.org/10.1016/j.jphotobiol.2017.04.022 LeeJH, VelmuruganP, ParkJH, MuruganK, LovanhN, ParkYJ, OhBT, VenkatachalamP, BenelliG (2017) A novel photo-biological engineering method for Salvia miltiorrhiza-mediated fabrication of silver nanoparticles using LED lights sources and its effectiveness against Aedes aegyptiMosquito larvae and microbial pathogens.Physiol Mol plant Pathol xx:1–9https://doi.org/10.1016/j.pmpp.2017.03.010 Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353(2):433–444. https://doi.org/10.1016/j.jcis.2010.09.088 Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-Synthetized Silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114(11):4305–4317. https://doi.org/10.1007/s00436-015-4671-0 Mahendran G, Kumari BR (2016) Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. Fruit extracts. Food Sci Human Wellness 5(4):207–218. https://doi.org/10.1016/j.fshw.2016.10.001 Mahesh Kumar P, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, Dinesh D, Suresh U, Nicoletti M, Saleh Alsalhi M, Devanesan S, Wei H, Kalimuthu K, Hwang JS, Lo Iacono A, Benelli G (2016) Biosynthesis, characterization and acute toxicity of Berberis tinctoria-Fabricated Silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res 115(2):751–759. https://doi.org/10.1007/s00436-015-4799-y Mahyoub JA, Aziz AT, Panneerselvam C, Murugan K, Roni M, Trivedi S, Nicoletti M, Hawas UW, Shaher FM, Bamakhrama MA, Canale A, Benelli G (2017) Sea grasses as sources of mosquito nano-larvicides? Toxicity and uptake of Halodule uninervis-Biofabricated Silver nanoparticles in dengue and Zika virus vector Aedes aegypti. J Clust Sci 28(1):565–580. https://doi.org/10.1007/s10876-016-1127-3 Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U (2016) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253 Murugan K, Wei J, Saleh Alsalhi M, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J, Vadivalagan C, Wei H, Amuthavalli P, Jaganathan A, Devanesan S, Higuchi A, Kumar S, Aziz AT, Nataraj D, Vaseeharan B, Canale A, Benelli G (2017) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN- 2), and their mosquito vectors. Parasitol Res 116(2):495–502. https://doi.org/10.1007/s00436-016-5310-0 Nahar UJ, Bhuiyan MMR, Samsudduzah ANM, Uddin MR, Maryam Z (2012) Phytochemical screening, cytotoxic and CNS depressant activities of Holarrhena antidysentericaleaves and seeds. Int J Pharm Sci Res 6:620–623 Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C (2007) The effect of gain and absorption on surface plasmos in metal nanoparticles. Appl Phys B-Lasers O 86(3):455–460. https://doi.org/10.1007/s00340-006-2401-0 Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatussay). Parasitol Res 102(1):171–174. https://doi.org/10.1007/s00436-007-0763-9 Pandey V, Chopra M, Agrawal V (2011) In vitro isolation and characterization of biolarvicidal compounds from micropropagated plants of Spilanthes acmella. Parasitol Res 108(2):297–304. https://doi.org/10.1007/s00436-010-2056-y Panneerselvam C, Murugan K, Roni M, Suresh U, Rajaganesh R, Madhiyazhagan P, Subramaniam J, Dinesh D, Nicoletti M, Higuchi A, Alarfaj AA (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity? Parasitol Res 115(3):997–1013. https://doi.org/10.1007/s00436-015-4828-x Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012a) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non-target fish Poecillia reticulate. Parasitol Res 111(2):555–562. https://doi.org/10.1007/s00436-012-2867-0 Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012b) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110(5):1815–1822. https://doi.org/10.1007/s00436-011-2704-x Pavela R, Murugan K, Canale A, Benelli G (2017) Saponaria officinalis-Synthesized Silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind Crop Prod 97:338–344. https://doi.org/10.1016/j.indcrop.2016.12.046 Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97(49):12974–12983. https://doi.org/10.1021/j100151a054 Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA, Elango G, Pandiyan G (2009) Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatussay (Diptera: Culicidae). Parasitol Res 104(3):637–643. https://doi.org/10.1007/s00436-008-1240-9 Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203. https://doi.org/10.1016/j.actatropica.2011.03.003 Raveen R, Kamakshi KT, Deepa M, Arivoli S, Tennyson S (2014) Larvicidal activity of Nerium oleanderL. (Apocynaceae) flower extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Int J Mosq Res 1:38–42 Rawani A (2017) Mosquito larvicidal activity of green silver nanoparticle synthesized from extract of bud of Polianthus tuberosa L. Int J Nanotechnol Appl 11:17–28 Rawani A, Ghosh A, Chandra G (2013) Mosquitolarvicidalandantimicrobialactivityofsynthesizednanocrystallinesilverparticlesusingleaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128(3):613–622. https://doi.org/10.1016/j.actatropica.2013.09.007 Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A (2015) Characterization and biotoxicity of Hypnea musciformis-Synthesized Silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38. https://doi.org/10.1016/j.ecoenv.2015.07.005 Salam H, Rajiv A, Kamaraj P, Jagadeeswaran M, Sangeetha P, Gunalan Sivaraj R (2012) Plants: green route for nanoparticle synthesis. Int Res J Biol Sci 1:85–90 Santhosh SB, Yuvarajan R, Natarajan D (2015) Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol Res 114(8):3087–3096. https://doi.org/10.1007/s00436-015-4511-2 Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702. https://doi.org/10.1007/s00436-010-2115-4 Shahabuddin KU, Sarwar MS, Mohiuddin EJAZ (2006) Clinical evaluation of some herbal medicine for amoebiasis. Pak. J Pharmacol Sci 23:9–12 Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Yn G (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6:73 Sharma G, Kapoor H, Chopra M, Kumar K, Agrawal V (2014a) Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds. Parasitol Res 113(1):197–209. https://doi.org/10.1007/s00436-013-3644-4 Sharma V, Hussain S, Bakshi M, Bhat N, Saxena AK (2014b) In vitro cytotoxic activity of leaves extracts of Holarrhena antidysenterica against some human cancer cell lines. Indian J Biochem Biophys 15:46–51 Shwetha C, Latha KP, Asha KA (2014) Study on analgesic activity of Holarrhena antidysenterica leaves. J Herb Med 2:14–16 Siddhardha B, Jobina R, Bibhuti R, Sukumar K (2014) Green rapid biogenic synthesis of bioactive silver nanoparticles (AgNPs) using Pseudomonas aeruginosa. IET Nanobiotechnol 8:267–274 Singh J, Kaur G, Kaur P, Bajaj R, Rawat M (2016) A review on green synthesis and characterization of silver nanoparticles and their applications: a green nanoworld. World J Pharm Pharm Sci 7:730–762 Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatussay (Diptera: Culicidae). Parasitol Res 112(2):487–499. https://doi.org/10.1007/s00436-012-3158-5 Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Kumar PM, Chandramohan B, Suresh U, Rajaganesh R, Alsalhi MS (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23(8):7543–7558. https://doi.org/10.1007/s11356-015-6007-0 Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113(3):875–880. https://doi.org/10.1007/s00436-013-3718-3 Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114(9):3315–3325. https://doi.org/10.1007/s00436-015-4556-2 Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114(4):1551–1562. https://doi.org/10.1007/s00436-015-4339-9 Tesfazghi K, Hill J, Jones C, Ranson H, Worrall E (2016) National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria. Health Policy Plan 31:9–101 Thakur P, Chawla R, Narula A, Goel R, Arora R, Sharma RK (2016) Anti-hemolytic, hemagglutination inhibition and bacterial membrane disruptive properties of selected herbal extracts attenuate virulence of Carbapenem resistant Escherichia coli. Microb Pathog 95:133–141. https://doi.org/10.1016/j.micpath.2016.04.005 Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014a) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(5):1775–1785. https://doi.org/10.1007/s00436-014-3823-y Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014b) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113(6):2363–2373. https://doi.org/10.1007/s00436-014-3895-8 WHO (1988) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC/81.807, Geneva WHO (2004) Global Strategic Framework for Integrated Vector Management. World Health Organization (In WHO/CDS/CPE/PVC/2004), pp 12 Yadav A, Rai M (2011) Bioreduction and mechanistic aspects involved in the synthesis of silver nanoparticles using Holarrhena antidysenterica. J Bionanoscience 5(1):70–73. https://doi.org/10.1166/jbns.2011.1051