A rational approximation of the Dawson’s integral for efficient computation of the complex error function
Tài liệu tham khảo
Faddeyeva, 1961
Gautschi, 1970, Efficient computation of the complex error function, SIAM J. Numer. Anal., 7, 187, 10.1137/0707012
Abramowitz, 1972, Error function and fresnel integrals, 297
Armstrong, 1972
Schreier, 1992, The Voigt and complex error function: a comparison of computational methods, J. Quant. Spectrosc. Radiat. Transfer, 48, 743, 10.1016/0022-4073(92)90139-U
Weideman, 1994, Computation of the complex error function, SIAM J. Numer. Anal., 31, 1497, 10.1137/0731077
Cody, 1970, Chebyshev approximations for Dawson’s integral, Math. Comput., 24, 171
Cabe, 1974, A continued fraction expansion with a truncation error estimate for Dawson’s integral, Math. Comput., 28, 811
Rybicki, 1989, integral and the sampling theorem, Comput. Phys., 3, 85, 10.1063/1.4822832
Boyd, 2008, Evaluating of Dawson’s integral by solving its differential equation using orthogonal rational Chebyshev functions, Appl. Math. Comput., 204, 914
S.M. Abrarov, B.M. Quine, A rational approximation for the Dawson’s integral of real argument, arXiv:1505.04683.
V. Nijimbere, Analytical evaluation and asymptotic evaluation of Dawson’s integral and related functions in mathematical physics, arXiv:1703.06757.
Srivastava, 1987, A unified presentations of the Voigt functions, Astrophys. Space Sci., 135, 111, 10.1007/BF00644466
Srivastava, 1992, Some unified presentations of the Voigt functions, Astrophys. Space Sci., 192, 63, 10.1007/BF00653260
Pagnini, 2010, Evolution equations for the probabilistic generalization of the Voigt profile function, J. Comput. Appl. Math., 233, 1590, 10.1016/j.cam.2008.04.040
Armstrong, 1967, Spectrum line profiles: the Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 7, 61, 10.1016/0022-4073(67)90057-X
Letchworth, 2007, Rapid and accurate calculation of the Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 107, 173, 10.1016/j.jqsrt.2007.01.052
D.P. Edwards, GENLN2: a general line-by-line atmospheric transmittance and radiance model, NCAR Technical Note (1992). https://doi.org/10.5065/D6W37T86.
Quine, 2002, GENSPECT: a line-by-line code with selectable interpolation error tolerance, J. Quant. Spectrosc. Radiat. Transfer, 74, 147, 10.1016/S0022-4073(01)00193-5
Christensen, 2012, Tunable laser spectroscopy of CO2 near 2.05 μm: atmospheric retrieval biases due to neglecting line-mixing, J. Quant. Spectrosc. Radiat. Transfer, 113, 739, 10.1016/j.jqsrt.2012.02.031
Berk, 2013, Voigt equivalent widths and spectral-bin single-line transmittances: exact expansions and the MODTRAN®5 implementation, J. Quant. Spectrosc. Radiat. Transfer, 118, 102, 10.1016/j.jqsrt.2012.11.026
Quine, 2013, Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling, J. Quant. Spectrosc. Radiat. Transfer, 127, 37, 10.1016/j.jqsrt.2013.04.020
Emerson, 1996
Farsad, 2015, Stable distributions as noise models for molecular communication, 1
Prince, 2004
Balazs, 1969, Semiclassical dispersion theory of lasers, Phil. Trans. R. Soc. A, 264, 129, 10.1098/rsta.1969.0002
Chan, 1986, Equation of atomic resonance for solid-state optics, Appl. Opt., 25, 1728, 10.1364/AO.25.001728
Fried, 1961
E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, Chapman & Hall/CRC, second ed., (2003).
Kenna, 1984, A method of computing the complex probability function and other related functions over the whole complex plane, Astrophys. Space Sci., 107, 71, 10.1007/BF00649615
Zaghloul, 2011, Algorithm 916: computing the Faddeyeva and Voigt functions, ACM Trans. Math. Softw., 38, 15:1, 10.1145/2049673.2049679
Press, 1992, Numerical recipes in C
Chiarella, 1968, On the evaluation of integrals related to the error function, Math. Comput., 22, 137, 10.1090/S0025-5718-1968-0223068-4
Abrarov, 2014, Master-slave algorithm for highly accurate and rapid computation of the Voigt/complex error function, J. Math. Res., 6, 104, 10.5539/jmr.v6n2p104
Abrarov, 2015, Sampling by incomplete cosine expansion of the sinc function: application to the Voigt/complex error function, Appl. Math. Comput., 258, 425
Abrarov, 2011, Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation, Appl. Math. Comput., 218, 1894
Amamou, 2013, Calculation of the voigt function in the region of very small values of the parameter a where the calculation is notoriously difficult, Am. J. Anal. Chem., 4, 725, 10.4236/ajac.2013.412087
Abrarov, 2015, Accurate approximations for the complex error function with small imaginary argument, J. Math. Res., 7, 44, 10.5539/jmr.v7n1p44
Abrarov, 2016, A new application of the Fourier transform for rational approximation of the complex error function, J. Math. Res., 8, 14, 10.5539/jmr.v8n1p14
T.M. Karbach, G. Raven, M. Schiller, Decay time integrals in neutral meson mixing and their efficient evaluation, arXiv:1407.0748.
Jones, 1988, Continued fractions in numerical analysis, Appl. Numer. Math., 4, 143, 10.1016/0168-9274(83)90002-8
Poppe, 1990, More efficient computation of the complex error function, ACM Trans. Math. Softw., 16, 38, 10.1145/77626.77629
Poppe, 1990, Algorithm 680: evaluation of the complex error function, ACM Trans. Math. Softw., 16, 47, 10.1145/77626.77630
S.M. Abrarov, B.M. Quine, Representation of the Fourier transform as a weighted sum of the complex error functions, arXiv:1507.01241.
Rothman, 2013, The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 130, 4, 10.1016/j.jqsrt.2013.07.002
Abrarov, 2015, A rational approximation for efficient computation of the Voigt function in quantitative spectroscopy, J. Math. Res., 7, 163, 10.5539/jmr.v7n2p163
Salzer, 1951, Formulas for calculating the error function of a complex variable, Math. Tables Aids Comput., 5, 61, 10.2307/2002163
Zaker, 1969, Calculation of the complementary error function of complex argument, J. Comput. Phys., 4, 427, 10.1016/0021-9991(69)90011-4
Berk, 2017, Validation of MODTRAN® 6 and its line-by-line algorithm, J. Quant. Spectrosc. Radiat. Transfer, 203, 542, 10.1016/j.jqsrt.2017.03.004
Pliutau, 2017, Bytran −∣− spectral calculations for portable devices using the HITRAN database, Earth Sci. Inf., 10, 395, 10.1007/s12145-017-0288-4
R.N. Bracewell, The Fourier Transform and its Application, third ed., McGraw-Hill, 2000.
Hansen, 2014
S.G. Johnson, Faddeeva package, http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package.
Matlab Central, file ID #: 38787.
Matlab Central, file ID #: 12091.
Matlab Central, file ID #: 47801.
Matta, 1971, Uniform computation of the error function and other related functions, Math. Comput., 25, 339, 10.1090/S0025-5718-1971-0295538-4