A rational approximation of the Dawson’s integral for efficient computation of the complex error function

Applied Mathematics and Computation - Tập 321 - Trang 526-543 - 2018
Sanjar M. Abrarov1, Brendan M. Quine1,2
1Department of Earth and Space Science and Engineering, York University, Toronto M3J 1P3, Canada
2Department of Physics and Astronomy, York University, Toronto M3J 1P3 Canada

Tài liệu tham khảo

Faddeyeva, 1961 Gautschi, 1970, Efficient computation of the complex error function, SIAM J. Numer. Anal., 7, 187, 10.1137/0707012 Abramowitz, 1972, Error function and fresnel integrals, 297 Armstrong, 1972 Schreier, 1992, The Voigt and complex error function: a comparison of computational methods, J. Quant. Spectrosc. Radiat. Transfer, 48, 743, 10.1016/0022-4073(92)90139-U Weideman, 1994, Computation of the complex error function, SIAM J. Numer. Anal., 31, 1497, 10.1137/0731077 Cody, 1970, Chebyshev approximations for Dawson’s integral, Math. Comput., 24, 171 Cabe, 1974, A continued fraction expansion with a truncation error estimate for Dawson’s integral, Math. Comput., 28, 811 Rybicki, 1989, integral and the sampling theorem, Comput. Phys., 3, 85, 10.1063/1.4822832 Boyd, 2008, Evaluating of Dawson’s integral by solving its differential equation using orthogonal rational Chebyshev functions, Appl. Math. Comput., 204, 914 S.M. Abrarov, B.M. Quine, A rational approximation for the Dawson’s integral of real argument, arXiv:1505.04683. V. Nijimbere, Analytical evaluation and asymptotic evaluation of Dawson’s integral and related functions in mathematical physics, arXiv:1703.06757. Srivastava, 1987, A unified presentations of the Voigt functions, Astrophys. Space Sci., 135, 111, 10.1007/BF00644466 Srivastava, 1992, Some unified presentations of the Voigt functions, Astrophys. Space Sci., 192, 63, 10.1007/BF00653260 Pagnini, 2010, Evolution equations for the probabilistic generalization of the Voigt profile function, J. Comput. Appl. Math., 233, 1590, 10.1016/j.cam.2008.04.040 Armstrong, 1967, Spectrum line profiles: the Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 7, 61, 10.1016/0022-4073(67)90057-X Letchworth, 2007, Rapid and accurate calculation of the Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 107, 173, 10.1016/j.jqsrt.2007.01.052 D.P. Edwards, GENLN2: a general line-by-line atmospheric transmittance and radiance model, NCAR Technical Note (1992). https://doi.org/10.5065/D6W37T86. Quine, 2002, GENSPECT: a line-by-line code with selectable interpolation error tolerance, J. Quant. Spectrosc. Radiat. Transfer, 74, 147, 10.1016/S0022-4073(01)00193-5 Christensen, 2012, Tunable laser spectroscopy of CO2 near 2.05 μm: atmospheric retrieval biases due to neglecting line-mixing, J. Quant. Spectrosc. Radiat. Transfer, 113, 739, 10.1016/j.jqsrt.2012.02.031 Berk, 2013, Voigt equivalent widths and spectral-bin single-line transmittances: exact expansions and the MODTRAN®5 implementation, J. Quant. Spectrosc. Radiat. Transfer, 118, 102, 10.1016/j.jqsrt.2012.11.026 Quine, 2013, Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling, J. Quant. Spectrosc. Radiat. Transfer, 127, 37, 10.1016/j.jqsrt.2013.04.020 Emerson, 1996 Farsad, 2015, Stable distributions as noise models for molecular communication, 1 Prince, 2004 Balazs, 1969, Semiclassical dispersion theory of lasers, Phil. Trans. R. Soc. A, 264, 129, 10.1098/rsta.1969.0002 Chan, 1986, Equation of atomic resonance for solid-state optics, Appl. Opt., 25, 1728, 10.1364/AO.25.001728 Fried, 1961 E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, Chapman & Hall/CRC, second ed., (2003). Kenna, 1984, A method of computing the complex probability function and other related functions over the whole complex plane, Astrophys. Space Sci., 107, 71, 10.1007/BF00649615 Zaghloul, 2011, Algorithm 916: computing the Faddeyeva and Voigt functions, ACM Trans. Math. Softw., 38, 15:1, 10.1145/2049673.2049679 Press, 1992, Numerical recipes in C Chiarella, 1968, On the evaluation of integrals related to the error function, Math. Comput., 22, 137, 10.1090/S0025-5718-1968-0223068-4 Abrarov, 2014, Master-slave algorithm for highly accurate and rapid computation of the Voigt/complex error function, J. Math. Res., 6, 104, 10.5539/jmr.v6n2p104 Abrarov, 2015, Sampling by incomplete cosine expansion of the sinc function: application to the Voigt/complex error function, Appl. Math. Comput., 258, 425 Abrarov, 2011, Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation, Appl. Math. Comput., 218, 1894 Amamou, 2013, Calculation of the voigt function in the region of very small values of the parameter a where the calculation is notoriously difficult, Am. J. Anal. Chem., 4, 725, 10.4236/ajac.2013.412087 Abrarov, 2015, Accurate approximations for the complex error function with small imaginary argument, J. Math. Res., 7, 44, 10.5539/jmr.v7n1p44 Abrarov, 2016, A new application of the Fourier transform for rational approximation of the complex error function, J. Math. Res., 8, 14, 10.5539/jmr.v8n1p14 T.M. Karbach, G. Raven, M. Schiller, Decay time integrals in neutral meson mixing and their efficient evaluation, arXiv:1407.0748. Jones, 1988, Continued fractions in numerical analysis, Appl. Numer. Math., 4, 143, 10.1016/0168-9274(83)90002-8 Poppe, 1990, More efficient computation of the complex error function, ACM Trans. Math. Softw., 16, 38, 10.1145/77626.77629 Poppe, 1990, Algorithm 680: evaluation of the complex error function, ACM Trans. Math. Softw., 16, 47, 10.1145/77626.77630 S.M. Abrarov, B.M. Quine, Representation of the Fourier transform as a weighted sum of the complex error functions, arXiv:1507.01241. Rothman, 2013, The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 130, 4, 10.1016/j.jqsrt.2013.07.002 Abrarov, 2015, A rational approximation for efficient computation of the Voigt function in quantitative spectroscopy, J. Math. Res., 7, 163, 10.5539/jmr.v7n2p163 Salzer, 1951, Formulas for calculating the error function of a complex variable, Math. Tables Aids Comput., 5, 61, 10.2307/2002163 Zaker, 1969, Calculation of the complementary error function of complex argument, J. Comput. Phys., 4, 427, 10.1016/0021-9991(69)90011-4 Berk, 2017, Validation of MODTRAN® 6 and its line-by-line algorithm, J. Quant. Spectrosc. Radiat. Transfer, 203, 542, 10.1016/j.jqsrt.2017.03.004 Pliutau, 2017, Bytran −∣− spectral calculations for portable devices using the HITRAN database, Earth Sci. Inf., 10, 395, 10.1007/s12145-017-0288-4 R.N. Bracewell, The Fourier Transform and its Application, third ed., McGraw-Hill, 2000. Hansen, 2014 S.G. Johnson, Faddeeva package, http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package. Matlab Central, file ID #: 38787. Matlab Central, file ID #: 12091. Matlab Central, file ID #: 47801. Matta, 1971, Uniform computation of the error function and other related functions, Math. Comput., 25, 339, 10.1090/S0025-5718-1971-0295538-4