Toxicity assessment of green synthesized Cu nanoparticles by cell-free extract of Pseudomonas silesiensis as antitumor cancer and antimicrobial

Annals of Agricultural Sciences - Tập 66 - Trang 8-15 - 2021
Gehan F. Galal1, Basma T. Abd-Elhalim1, Khadiga A. Abou-Taleb1, Ahmed A. Haroun2, Rawia F. Gamal1
1Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shubra 11241, Cairo, Egypt
2Chemical Industries Research Division, Center of Excellency for Advanced Sciences, National Research Centre, Dokki, 12622, Cairo, Egypt

Tài liệu tham khảo

Abboud, 2014, Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata), Appl. Nanosci., 4, 571, 10.1007/s13204-013-0233-x Abd-Elhalim, 2019, Biosynthesis of copper nanoparticles using bacterial supernatant optimized with certain agro-industrial byproducts, Nov. Res. Microbio. J., 3, 558, 10.21608/nrmj.2019.66748 Ahamed, 2010, Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells, Biochem. Biophys. Res. Commun., 396, 578, 10.1016/j.bbrc.2010.04.156 Azizi, 2017, Anticancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line, Sci. Rep., 7, 5178, 10.1038/s41598-017-05461-3 Balouiri, 2016, Methods for in vitro evaluating antimicrobial activity: a review, J. Pharm. Anal., 6, 71, 10.1016/j.jpha.2015.11.005 Berche, 1988, Nosocomial infections caused by bacteria and their prevention in bacteriology, Ed Flammarion Med. Sci., 64 Betancourt-Galindo, 2014, Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties, J. Nanomat., 5, 1155 Bhatnagar, 2019, Biosynthesis of silver nanoparticles mediated by extracellular pigment from Talaromyces purpurogenus and their biomedical applications, J. Nanomater., 9, 1042, 10.3390/nano9071042 Bondarenko, 2013, Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review, Arch. Toxicol., 87, 1181, 10.1007/s00204-013-1079-4 Borkow, 2009, Copper: an ancient remedy returning to fight microbial, fungal and viral infections, Curr. Chem. Biol., 3, 272 Chatterjee, 2014, Mechanism of antibacterial activity of copper nanoparticles, Nanotechnol., 25, 135101, 10.1088/0957-4484/25/13/135101 CLSI (Clinical and laboratory standard Institute), 2015 Das, 2017, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage, Ara. J. Chem., 10, 862, 10.1016/j.arabjc.2015.08.008 Difco Manual, 1984 Duncan, 1955, Multiple range and multiple F test, Biomerics., 11, 1, 10.2307/3001478 Grass, 2011, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77, 1541, 10.1128/AEM.02766-10 Grotz, 2018, Biologic effects of nanoparticle-allergen conjugates: Time-resolved uptake using an in vitro lung epithelial co-culture model of A549 and THP-1 cells, Environ. Sci. Nano., 5, 2184, 10.1039/C8EN00243F Hajipour, 2012, Antibacterial properties of nanoparticles, Trends Biotechnol., 3, 497 Harne, 2012, Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells, Colloid Surface B., 15, 284, 10.1016/j.colsurfb.2012.03.005 He, 2011, Antifungal activityof zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res., 166, 207, 10.1016/j.micres.2010.03.003 Honary, 2013, Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2), Trop J. Pharm. Res., 12, 265 Huk, 2015, Impact of nanosilver on various DNA lesions and HPRT gene mutations Effects of charge and surface coating, Part. Fibre. Toxicol., 12, 25, 10.1186/s12989-015-0100-x IBM® SPSS® Statistics, 2017 Jayandran, 2015, Green synthesis of copper nanoparticles using natural reducer and stabilizer and an evaluation of antimicrobial activity, J. Chem. Pharma. Res., 7, 251 Kalatehjari, 2015, Assessment of antifungal effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. on white fish (Rutilus frisii kutum) eggs, Egypt. J. Aquat. Res., 41, 303, 10.1016/j.ejar.2015.07.004 Kim, 2007, Antimicrobial effects of silver nanoparticles, Nanomedicine: Nanotechnol. Biol. Med., 3, 95, 10.1016/j.nano.2006.12.001 Kim, 2012, Comparative toxicity studies of ultra-pure Ag, Au, Co, and Cu nanoparticles generated by laser ablation in biocompatible aqueous solution, Bull. Korean Chem. Soc., 33, 3265, 10.5012/bkcs.2012.33.10.3265 Kononenko, 2017, Harmful at non-cytotoxic concentrations: SiO2-SPIONs affect surfactant metabolism and lamellar body biogenesis in A549 human alveolar epithelial cells, Nanotoxicol., 11, 419, 10.1080/17435390.2017.1309704 Llorens, 2012, Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices, Int. J. Food Microbiol., 158, 113, 10.1016/j.ijfoodmicro.2012.07.004 Martin, 2017, Overview on biological implications of metal oxide nanoparticle exposure to human alveolar A549 cell line, J. Nanotoxicol., 11, 1 Mohammadinejad, 2015, Plant-derived nanostructures: types and applications, Green Chem., 18, 20, 10.1039/C5GC01403D Nabipour, 2015, Comparing the antimicrobial effects of silver and copper nanoparticles against pathogenic and resistant bacteria of Klebsiella pneumonia, Pseudomonas aeruginosa and Staphylococcus aureus. Cumhuriyet Sci. J., 36, 2540 Pariona, 2019, Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens, R S C Adv., 9, 18835 Patra, 2018, Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnol., 16, 71, 10.1186/s12951-018-0392-8 Rabe, 2002, Isolation and identification of antibacterial compounds from Vernonia colorata leaves, J. Ethnopharm., 80, 91, 10.1016/S0378-8741(02)00010-7 Raffi, 2010, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli, Ann. Microbiol., 60, 75, 10.1007/s13213-010-0015-6 Ramyadevi, 2012, Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett., 71, 114, 10.1016/j.matlet.2011.12.055 Ranjitham, 2015, Biosynthesis, characterization, antimicrobial activity of copper nanoparticles using fresh aqueous Ananas comosus L. (pineapple) extract, Inter. J. Pharm. Tech. Res., 8, 750 Rasool, 2019, Effect of biosynthesized copper nanoparticles (CuNPs) on the growth and biofilm formation of fluconazole-resistant Candida albicans, J. Microbiol. Biotech. Food Sci., 9, 21, 10.15414/jmbfs.2019.9.1.21-24 Ren, 2009, Characterisation of copper oxide nanoparticles for antimicrobial applications, Inter. J. Antimicrob. Agents., 33, 587, 10.1016/j.ijantimicag.2008.12.004 Rubilar, 2013, Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications, Biotechnol. Lett., 35, 1365, 10.1007/s10529-013-1239-x Ruparelia, 2008, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta. Biomaterialia, 4, 707, 10.1016/j.actbio.2007.11.006 Sen, 2012, Determination of antimicrobial potentialities of different solvent extracts of the medicinal plant: Phyllanthus amarus Schum. and Thonn. Int. J, Green Pharm., 6, 50, 10.4103/0973-8258.97129 Shannahan, 2013, Silver nanoparticle protein corona composition in cell culture media, PLoS One, 9 Shrivastava, 2007, Characterization of enhanced antibacterial effects of nano silver nano particles, J. Nanotechnol., 18, 225103, 10.1088/0957-4484/18/22/225103 Singariya, 2012, Antimicrobial activity of fruit coat (calyx) of Withania somnifera against some multi drug resistant microbes, Int. J. Biol. Pharm. Res., 3, 252 Singh, 2019, Study on physical properties of Ayurvedic nanocrystalline Tamra Bhasma by employing modern scientific tools, J. Ayurveda Integr. Med. Article., 10, 88, 10.1016/j.jaim.2017.06.012 Subbaiya, 2015, Green synthesis of copper nanoparticles from Hibicus Rosasinensis and their antimicrobial, antioxidant activities, Res. J. Pharma. Biolog. Chem. Sci., 6, 1183 Tiwari, 2016, Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate, Process Biochem., 51, 1348, 10.1016/j.procbio.2016.08.008 Tsuji, 2006, Research strategies for safety evaluation of nanomaterials, part iv: risk assessment of nanoparticles, Toxicol. Sci., 89, 42, 10.1093/toxsci/kfi339 Viet, 2016, Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method, J. Nanomater., 10, 1155 Williams, 2006, Evaluation of the microbial growth response to inorganic nanoparticles, J. Nanobiotechnol., 51, 956 Wright, 2014, The evolving role of chemical synthesis in antibacterial drug discovery, Angew. Chem. Int. Ed. Eng., 53, 8840, 10.1002/anie.201310843 Yoon, 2007, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ., 373, 572, 10.1016/j.scitotenv.2006.11.007