Toxicity assessment of green synthesized Cu nanoparticles by cell-free extract of Pseudomonas silesiensis as antitumor cancer and antimicrobial
Tài liệu tham khảo
Abboud, 2014, Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata), Appl. Nanosci., 4, 571, 10.1007/s13204-013-0233-x
Abd-Elhalim, 2019, Biosynthesis of copper nanoparticles using bacterial supernatant optimized with certain agro-industrial byproducts, Nov. Res. Microbio. J., 3, 558, 10.21608/nrmj.2019.66748
Ahamed, 2010, Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells, Biochem. Biophys. Res. Commun., 396, 578, 10.1016/j.bbrc.2010.04.156
Azizi, 2017, Anticancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line, Sci. Rep., 7, 5178, 10.1038/s41598-017-05461-3
Balouiri, 2016, Methods for in vitro evaluating antimicrobial activity: a review, J. Pharm. Anal., 6, 71, 10.1016/j.jpha.2015.11.005
Berche, 1988, Nosocomial infections caused by bacteria and their prevention in bacteriology, Ed Flammarion Med. Sci., 64
Betancourt-Galindo, 2014, Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties, J. Nanomat., 5, 1155
Bhatnagar, 2019, Biosynthesis of silver nanoparticles mediated by extracellular pigment from Talaromyces purpurogenus and their biomedical applications, J. Nanomater., 9, 1042, 10.3390/nano9071042
Bondarenko, 2013, Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review, Arch. Toxicol., 87, 1181, 10.1007/s00204-013-1079-4
Borkow, 2009, Copper: an ancient remedy returning to fight microbial, fungal and viral infections, Curr. Chem. Biol., 3, 272
Chatterjee, 2014, Mechanism of antibacterial activity of copper nanoparticles, Nanotechnol., 25, 135101, 10.1088/0957-4484/25/13/135101
CLSI (Clinical and laboratory standard Institute), 2015
Das, 2017, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage, Ara. J. Chem., 10, 862, 10.1016/j.arabjc.2015.08.008
Difco Manual, 1984
Duncan, 1955, Multiple range and multiple F test, Biomerics., 11, 1, 10.2307/3001478
Grass, 2011, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77, 1541, 10.1128/AEM.02766-10
Grotz, 2018, Biologic effects of nanoparticle-allergen conjugates: Time-resolved uptake using an in vitro lung epithelial co-culture model of A549 and THP-1 cells, Environ. Sci. Nano., 5, 2184, 10.1039/C8EN00243F
Hajipour, 2012, Antibacterial properties of nanoparticles, Trends Biotechnol., 3, 497
Harne, 2012, Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells, Colloid Surface B., 15, 284, 10.1016/j.colsurfb.2012.03.005
He, 2011, Antifungal activityof zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res., 166, 207, 10.1016/j.micres.2010.03.003
Honary, 2013, Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2), Trop J. Pharm. Res., 12, 265
Huk, 2015, Impact of nanosilver on various DNA lesions and HPRT gene mutations Effects of charge and surface coating, Part. Fibre. Toxicol., 12, 25, 10.1186/s12989-015-0100-x
IBM® SPSS® Statistics, 2017
Jayandran, 2015, Green synthesis of copper nanoparticles using natural reducer and stabilizer and an evaluation of antimicrobial activity, J. Chem. Pharma. Res., 7, 251
Kalatehjari, 2015, Assessment of antifungal effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. on white fish (Rutilus frisii kutum) eggs, Egypt. J. Aquat. Res., 41, 303, 10.1016/j.ejar.2015.07.004
Kim, 2007, Antimicrobial effects of silver nanoparticles, Nanomedicine: Nanotechnol. Biol. Med., 3, 95, 10.1016/j.nano.2006.12.001
Kim, 2012, Comparative toxicity studies of ultra-pure Ag, Au, Co, and Cu nanoparticles generated by laser ablation in biocompatible aqueous solution, Bull. Korean Chem. Soc., 33, 3265, 10.5012/bkcs.2012.33.10.3265
Kononenko, 2017, Harmful at non-cytotoxic concentrations: SiO2-SPIONs affect surfactant metabolism and lamellar body biogenesis in A549 human alveolar epithelial cells, Nanotoxicol., 11, 419, 10.1080/17435390.2017.1309704
Llorens, 2012, Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices, Int. J. Food Microbiol., 158, 113, 10.1016/j.ijfoodmicro.2012.07.004
Martin, 2017, Overview on biological implications of metal oxide nanoparticle exposure to human alveolar A549 cell line, J. Nanotoxicol., 11, 1
Mohammadinejad, 2015, Plant-derived nanostructures: types and applications, Green Chem., 18, 20, 10.1039/C5GC01403D
Nabipour, 2015, Comparing the antimicrobial effects of silver and copper nanoparticles against pathogenic and resistant bacteria of Klebsiella pneumonia, Pseudomonas aeruginosa and Staphylococcus aureus. Cumhuriyet Sci. J., 36, 2540
Pariona, 2019, Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens, R S C Adv., 9, 18835
Patra, 2018, Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnol., 16, 71, 10.1186/s12951-018-0392-8
Rabe, 2002, Isolation and identification of antibacterial compounds from Vernonia colorata leaves, J. Ethnopharm., 80, 91, 10.1016/S0378-8741(02)00010-7
Raffi, 2010, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli, Ann. Microbiol., 60, 75, 10.1007/s13213-010-0015-6
Ramyadevi, 2012, Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett., 71, 114, 10.1016/j.matlet.2011.12.055
Ranjitham, 2015, Biosynthesis, characterization, antimicrobial activity of copper nanoparticles using fresh aqueous Ananas comosus L. (pineapple) extract, Inter. J. Pharm. Tech. Res., 8, 750
Rasool, 2019, Effect of biosynthesized copper nanoparticles (CuNPs) on the growth and biofilm formation of fluconazole-resistant Candida albicans, J. Microbiol. Biotech. Food Sci., 9, 21, 10.15414/jmbfs.2019.9.1.21-24
Ren, 2009, Characterisation of copper oxide nanoparticles for antimicrobial applications, Inter. J. Antimicrob. Agents., 33, 587, 10.1016/j.ijantimicag.2008.12.004
Rubilar, 2013, Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications, Biotechnol. Lett., 35, 1365, 10.1007/s10529-013-1239-x
Ruparelia, 2008, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta. Biomaterialia, 4, 707, 10.1016/j.actbio.2007.11.006
Sen, 2012, Determination of antimicrobial potentialities of different solvent extracts of the medicinal plant: Phyllanthus amarus Schum. and Thonn. Int. J, Green Pharm., 6, 50, 10.4103/0973-8258.97129
Shannahan, 2013, Silver nanoparticle protein corona composition in cell culture media, PLoS One, 9
Shrivastava, 2007, Characterization of enhanced antibacterial effects of nano silver nano particles, J. Nanotechnol., 18, 225103, 10.1088/0957-4484/18/22/225103
Singariya, 2012, Antimicrobial activity of fruit coat (calyx) of Withania somnifera against some multi drug resistant microbes, Int. J. Biol. Pharm. Res., 3, 252
Singh, 2019, Study on physical properties of Ayurvedic nanocrystalline Tamra Bhasma by employing modern scientific tools, J. Ayurveda Integr. Med. Article., 10, 88, 10.1016/j.jaim.2017.06.012
Subbaiya, 2015, Green synthesis of copper nanoparticles from Hibicus Rosasinensis and their antimicrobial, antioxidant activities, Res. J. Pharma. Biolog. Chem. Sci., 6, 1183
Tiwari, 2016, Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate, Process Biochem., 51, 1348, 10.1016/j.procbio.2016.08.008
Tsuji, 2006, Research strategies for safety evaluation of nanomaterials, part iv: risk assessment of nanoparticles, Toxicol. Sci., 89, 42, 10.1093/toxsci/kfi339
Viet, 2016, Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method, J. Nanomater., 10, 1155
Williams, 2006, Evaluation of the microbial growth response to inorganic nanoparticles, J. Nanobiotechnol., 51, 956
Wright, 2014, The evolving role of chemical synthesis in antibacterial drug discovery, Angew. Chem. Int. Ed. Eng., 53, 8840, 10.1002/anie.201310843
Yoon, 2007, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ., 373, 572, 10.1016/j.scitotenv.2006.11.007