Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis
Tài liệu tham khảo
Amiard, 1987, Application of atomic-absorption spectrophotometry using Zeeman effect to the determination of 8 trace-elements (Ag, Cd, Cr, Cu, Mn, Ni, Pb and Se) in biological-materials, Water Res., 21, 693, 10.1016/0043-1354(87)90081-9
Aubin-Tam, 2009, Site-directed nanoparticle labeling of cytochrome c, Proc. Natl. Acad. Sci. U.S.A., 106, 4095, 10.1073/pnas.0807299106
Bradford, 1976, A rapid and sensitive method for the quantification of microgram quantities of protein, utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Brandes, 2009, Thiol-based redox switches in eukaryotic proteins, Antiox. Redox Signal., 11, 997, 10.1089/ars.2008.2285
Cardinal, 2008, Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles, Surgery, 144, 125, 10.1016/j.surg.2008.03.036
Cedervall, 2007, Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proc. Natl. Acad. Sci. U.S.A., 104, 2050, 10.1073/pnas.0608582104
Chang, W., 2008. Manufacture of container for drinks, involves adding precious metal nanoparticles and intermedium particles to solution, permeating particles from solution into pores of porous container, and sintering the particles. KUO C (KUOC-Individual). US2007297931-A1.
Cho, 2009, Acute toxicity and pharmacokinetics of 13nm-sized PEG-coated gold nanoparticles, Toxicol. Appl. Pharmacol., 236, 16, 10.1016/j.taap.2008.12.023
Connor, 2005, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small, 1, 325, 10.1002/smll.200400093
Dani, 2008, MspA porin-gold nanoparticle assemblies: enhanced binding through a controlled cysteine mutation, Nano Lett., 8, 1229, 10.1021/nl072658h
Davies, 2005, The oxidative environment and protein damage, Biochim. Biophys. Acta: Proteins Proteom., 1703, 93, 10.1016/j.bbapap.2004.08.007
Diegoli, 2008, Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules, Sci. Total Environ., 402, 51, 10.1016/j.scitotenv.2008.04.023
Eaton, 2006, Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures, Free Rad. Biol. Med., 40, 1889, 10.1016/j.freeradbiomed.2005.12.037
Hansen, 2009, Quantifying the global cellular thiol-disulfide status, Proc. Natl. Acad. Sci. U.S.A., 106, 422, 10.1073/pnas.0812149106
Hu, 2010, Selecting the thiol proteome of Escherichia coli with activated thiol sepharose, Anal. Biochem., 398, 245, 10.1016/j.ab.2009.11.002
Jana, 2003, Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals, J. Am. Chem. Soc., 125, 14280, 10.1021/ja038219b
Jia, 2009, Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum, J. Am. Chem. Soc., 131, 40, 10.1021/ja808033w
Kamat, 2003, Nanoscience opportunities in environmental remediation, Compt. Rend. Chimie, 6, 999, 10.1016/j.crci.2003.06.005
Koehler, 2008, Effects of nanoparticles in Mytilus edulis gills and hepatopancreas—a new threat to marine life?, Mar. Environ. Res., 66, 12, 10.1016/j.marenvres.2008.02.009
Krpetic, 2009, A multidentate peptide for stabilization and facile bioconjugation of gold nanoparticles, Bioconjug. Chem., 20, 619, 10.1021/bc8003028
Kultz, 2007, Functional genomics and proteomics of the cellular osmotic stress response in ‘non-model’ organisms, J. Exp. Biol., 210, 1593, 10.1242/jeb.000141
Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0
Lee, 2009, Preparation and characterization of antioxidant nanospheres from multiple alpha-lipoic acid-containing compounds, Bioorg. Med. Chem. Lett., 19, 1678, 10.1016/j.bmcl.2009.01.102
Lewinski, 2008, Cytotoxicity of nanoparticles, Small, 4, 26, 10.1002/smll.200700595
Li, 2009, In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles, Cancer Lett., 274, 319, 10.1016/j.canlet.2008.09.024
Liu, 2009, Role of oxidative stress in cadmium toxicity and carcinogenesis, Toxicol. Appl. Pharmacol., 238, 209, 10.1016/j.taap.2009.01.029
Lu, 2009, Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation, Environ. Health Perspect., 117, 241, 10.1289/ehp.11811
Lyons, 2003, Immunoblotting determination of levels of heat shock protein and glutathione S-transferase in Blue mussel, Mytilus edulis, sampled from Cork Harbour, Ireland, the North and Baltic Seas, Mar. Environ. Res., 56, 585, 10.1016/S0141-1136(03)00044-8
Ma, 2010, Transcriptional responses to oxidative stress: pathological and toxicological implications, Pharmacol. Ther., 125, 376, 10.1016/j.pharmthera.2009.11.004
McDonagh, 2006, Redox proteomics in the blue mussel Mytilus edulis: carbonylation is not a pre-requisite for ubiquitination in acute free radical-mediated oxidative stress, Aquat. Toxicol., 79, 325, 10.1016/j.aquatox.2006.06.020
Mishra, 2009, Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L, Biores. Technol., 100, 2155, 10.1016/j.biortech.2008.10.041
Moore, 2007, Autophagic and lysosomal reactions to stress in the hepatopancreas of blue mussels, Aquat. Toxicol., 84, 80, 10.1016/j.aquatox.2007.06.007
Murphy, 2008, Gold nanoparticles in biology: beyond toxicity to cellular imaging, Acc. Chem. Res., 41, 1721, 10.1021/ar800035u
Nel, 2006, Toxic potential of materials at the nanolevel, Science, 311, 622, 10.1126/science.1114397
Oberdörster, 2005, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113, 823, 10.1289/ehp.7339
Pan, 2007, Size-dependent cytotoxicity of gold nanoparticles, Small, 3, 1941, 10.1002/smll.200700378
Pan, 2009, Gold nanoparticles of diameter 1.4nm trigger necrosis by oxidative stress and mitochondrial damage, Small, 5, 2067, 10.1002/smll.200900466
Panessa-Warren, 2008, Human epithelial cell processing of carbon and gold nanoparticles, Int. J. Nanotechnol., 5, 55, 10.1504/IJNT.2008.016549
Rabilloud, 1992, A comparison between low background silver diammine and silver-nitrate protein stains, Electrophoresis, 13, 429, 10.1002/elps.1150130190
Reeves, 2008, Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells, Mutat. Res. Fundam. Mol. Mech. Mutagen., 640, 113, 10.1016/j.mrfmmm.2007.12.010
Regoli, 2004, Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis, during a field translocation experiment, Aquat. Toxicol., 68, 167, 10.1016/j.aquatox.2004.03.011
Renault, 2008, Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea), Gold Bull., 41, 116, 10.1007/BF03216589
Senaratne, 2006, 5′-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice, Mol. Microbiol., 59, 1744, 10.1111/j.1365-2958.2006.05075.x
Shah, 2009, Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds, Water Air Soil Pollut., 197, 143, 10.1007/s11270-008-9797-6
Shaw, 2004, Seasonal variation in cytochrome P450 immunopositive protein levels, lipid peroxidation and genetic toxicity in digestive gland of the mussel Mytilus edulis, Aquat. Toxicol., 67, 325, 10.1016/j.aquatox.2004.01.013
Shukla, 2005, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview, Langmuir, 21, 10644, 10.1021/la0513712
Stoeger, 2006, Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice, Environ. Health Perspect., 114, 328, 10.1289/ehp.8266
Tedesco, 2008, Gold nanoparticles and oxidative stress in Mytilus edulis, Mar. Environ. Res., 66, 131, 10.1016/j.marenvres.2008.02.044
Tedesco, 2010, Exposure of the blue mussel, Mytilus edulis, to gold nanoparticle and the pro-oxidant menadione, Comp. Biochem. Physiol. C: Pharmacol. Toxicol., 151, 167, 10.1016/j.cbpc.2009.10.002
Vevers, 2008, Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro, Ecotoxicology, 17, 410, 10.1007/s10646-008-0226-9
Viarengo, 1989, Purification and biochemical characterization of a lysosomal copper-rich thionein-like protein involved in metal detoxification in the digestive gland of mussels, Comp. Biochem. Physiol. C: Pharmacol. Toxicol., 93, 389, 10.1016/0742-8413(89)90252-1
Ward, 2009, Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves, Mar. Environ. Res., 68, 137, 10.1016/j.marenvres.2009.05.002
Ward, 1993, Mechanisms of suspension-feeding in bivalved-resolution of current controversies by means of endoscopy, Limnol. Oceanogr., 38, 265, 10.4319/lo.1993.38.2.0265
Winterbourn, 2008, Thiol chemistry and specificity in redox signalling, Free Rad. Biol. Med., 45, 549, 10.1016/j.freeradbiomed.2008.05.004
Wong, 2009, Cleaner water using bimetallic nanoparticle catalysts, J. Chem. Technol. Biotechnol., 84, 158, 10.1002/jctb.2002
Xu, 2004, A novel method to construct a third-generation biosensor: self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres, Biosens. Bioelectron., 19, 1117, 10.1016/j.bios.2003.09.007
Zhang, 2009, Recent advances in nanotechnology applied to biosensors, Sensors, 9, 1033, 10.3390/s90201033
Zhang, 2008, Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles, Clin. Invest. Med., 31, 160, 10.25011/cim.v31i3.3473