Effect of Nanosilica on Moisture Susceptibility of Asphalt Emulsion Mixture

Arabian Journal for Science and Engineering - Tập 46 - Trang 11139-11151 - 2021
Seyyed Mohammad Mirabdolazimi1, Mohammad Mazhari Pakenari1, Amirhossein Kargari1
1Faculty of Engineering, University of Guilan, Rasht, Islamic Republic of Iran

Tóm tắt

Moisture susceptibility is a major concern about asphalt emulsion mixtures due to low mixing temperature and compaction. Therefore, herein, nanosilica was used because of its high specific surface, good dispersing ability, and strong adsorption, to improve the moisture susceptibility of asphalt emulsion mixture. The bitumen emulsion was modified with different percentages of nanosilica (0.2, 0.4, 0.7, and 0.9% of the bitumen weight). Then, the indirect tensile strength (ITS) test and compressive strength test were performed to evaluate the moisture susceptibility of the samples. The results demonstrated that the modification of the bitumen emulsion with nanosilica increased the ITS and compressive strength of the samples by improving the bitumen cohesion and increasing the adhesion of the bitumen and aggregates. This resulted in the indirect tensile strength ratio (TSR) and compressive strength ratio (CSR) parameters of 88% and 89%, which had increased by 22.5% and 27%, respectively. Also, the addition of nanosilica significantly increased the secant stiffness modulus and reduced the failure strain of asphalt emulsion mixtures against lateral deformation. The results of the statistical analysis indicated the significant effect of nanosilica addition on reducing the moisture susceptibility and improving the mechanical performance of asphalt emulsion mixtures at the 95% confidence level.

Tài liệu tham khảo

de Bueno, S.; da Silva, W.R.; de Lima, D.C.; Minete, E.: Engineering properties of fiber reinforced cold asphalt mixes. J. Environ. Eng. 129(10), 952–955 (2003) Thanaya, I.; Zoorob, S.; Forth, J.: A laboratory study on cold-mix, cold-lay emulsion mixtures. In: Proceedings of the Institution of Civil Engineers: Transport. vol TR1. Institution of Civil Engineers, pp. 47–55 (2009) James, A.: Overview of asphalt emulsion. Transportation Research Circular E-C102: Asphalt Emulsion Technology, pp. 1–15 (2006) Salomon, D.: Transportation research circular E-C102: Asphalt emulsion technology. Transportation Research Board, Washington, pp. 1–24 (2006) Ling, C.; Hanz, A.; Bahia, H.: Measuring moisture susceptibility of cold mix asphalt with a modified boiling test based on digital imaging. Constr. Build. Mater. 105, 391–399 (2016) Huang, Y.H.: Pavement analysis and design (1993) Jung, D.; Vinson, T.S.: Low temperature cracking resistance of asphalt concrete mixtures (with discussion). J. Assoc. Asphalt Paving Technol. p. 62 (1993) Tohme, P.; Sebaali, P.; Hajj, E.; Johnston, D.: Effectiveness of antistrip additives for bituminous mixtures. Int. J. Pavements 3 (2) (2004) Tayfur, S.; Ozen, H.; Aksoy, A.: Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr. Build. Mater. 21(2), 328–337 (2007) Yildirim, Y.: Polymer modified asphalt binders. Constr. Build. Mater. 21(1), 66–72 (2007) Behbahani, H.; Ziari, H.; Kamboozia, N.: Evaluation of the visco-elasto-plastic behavior of glasphalt mixtures through generalized and classic burger’s models modification. Constr. Build. Mater. 118, 36–42 (2016) Arabani, M.; Kamboozia, N.: Simulating the visco-elasto plastic behavior of glasphalt mixtures by using of modified Burgers model. Tech. J. Eng. Appl. Sci. 3(8), 678–685 (2013) Hamedi, G.H.; Ghalandari Shamami, K.; Mazhari Pakenari, M.: Effect of ultra-high-molecular-weight polyethylene on the performance characteristics of hot mix asphalt. Constr. Build. Mater. 258, 119729 (2020) Behbahani, H.; Ziari, H.; Kamboozia, N.; Khaki, A.M.; Mirabdolazimi, S.: Evaluation of performance and moisture sensitivity of glasphalt mixtures modified with nanotechnology zycosoil as an anti-stripping additive. Constr. Build. Mater. 78, 60–68 (2015) Hamedi, G.H.: Investigating the use of nano coating over the aggregate surface on moisture damage of asphalt mixtures. Int. J. Civ. Eng. 16(6), 659–669 (2018) Arabani, M.; Haghi, A.; Sani, A.M.; Kamboozia, N.: Use of nanoclay for improvement the microstructure and mechanical properties of soil stabilized by cement. In: Proceedings of the 4th International Conference on Nanostructures (2012) Shafabakhsh, G.; Jafari Ani, O.; Mirabdolazimi, S.M.: Rehabilitation of asphalt pavement to improvement the mechanical and environmental properties of asphalt concrete by using of nano particles. J. Rehab. Civ. Eng. pp. 1–22 (2019) Shafabakhsh, G.; Mirabdolazimi, S.; Sadeghnejad, M.: Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures. Constr. Build. Mater. 54, 566–571 (2014) Mirabdolazimi, S.M.; Kargari, A.H.; Mazhari Pakenari, M.: New achievement in moisture sensitivity of nano-silica modified asphalt mixture with a combined effect of bitumen type and traffic condition. Int. J. Pavement Res. Technol. 14(1), 105–115 (2021). https://doi.org/10.1007/s42947-020-0043-y Yao, H.; You, Z.; Li, L.; Lee, C.; Wingard, D.; Yap, Y.; Shi, X.; Goh, S.: Properties and chemical bonding of asphalt and asphalt mixtures modified with nanosilica. J. Mater. Civ. Eng., (ASCE) (2012) Yusoff, N.I.M.; Breem, A.A.S.; Alattug, H.N.; Hamim, A.; Ahmad, J.: The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Constr. Build. Mater. 72, 139–147 (2014) Bala, N.; Napiah, M.; Kamaruddin, I.: Effect of nanosilica particles on polypropylene polymer modified asphalt mixture performance. Case Stud. Construct. Mater. 8, 447–454 (2018) Cai, L.; Shi, X.; Xue, J.: Laboratory evaluation of composed modified asphalt binder and mixture containing nano-silica/rock asphalt/SBS. Constr. Build. Mater. 172, 204–211 (2018) Crucho, J.M.L.; das Neves, J.M.C.; Capitão, S.D.; de Picado-Santos, L.G.: Mechanical performance of asphalt concrete modified with nanoparticles: Nanosilica, zero-valent iron and nanoclay. Construct. Build. Mater. 181, 309–318 (2018) Hasaninia, M.; Haddadi, F.: The characteristics of hot mixed asphalt modified by nanosilica. Pet. Sci. Technol. 35(4), 351–359 (2017) Sadeghpour Galooyak, S.; Palassi, M.; Goli, A.; Zanjirani Farahani, H.: Performance evaluation of nano-silica modified bitumen. Int. J. Transp. Eng. 3(1), 55–66 (2015) Sadeghnejad, M.; Shafabakhsh, G.: Use of Nano SiO2 and Nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures. Constr. Build. Mater. 157, 965–974 (2017) Sezavar, R.; Shafabakhsh, G.; Mirabdolazimi, S.: New model of moisture susceptibility of nano silica-modified asphalt concrete using GMDH algorithm. Constr. Build. Mater. 211, 528–538 (2019) Shafabakhsh, G.; Jafari Ani, O.; Mirabdolazimi, S.: Experimental Investigation on rutting performance of micro silica modified asphalt mixtures. Int. J. Eng. Res. Technol. 4(1), 371–378 (2015) Tanzadeh, J.; Otadi, A.: Testing and evaluating the effect of adding fibers and nanomaterials on improving the performance properties of thin surface asphalt. J. Test. Eval. 47(1), 654–677 (2018) Alavi, S.A.K.; Tanzadeh, J.; Honarmand, M.; Mirhosseini, A.F.: Performance evaluation of hybrid fibers and nano-zeolite modified asphalt micro-surfacing. J. Testing Eval. 48(3) (2020) AASHTO: Guide for design of pavement structures. New York (1993) Kamboozia, N.; Bagheri, A.; Mirabdolazimi, S.M.: Estimation of the experimental relationship between compressive strength and electrical resistivity of permeable concrete surface for use in roads and bridges decks drainage. J. Transp. Infrastruct. Eng. 6(2), 21–44 (2020) Fernández, L.D.; Lara, E.; Mitchell, E.A.: Checklist, diversity and distribution of testate amoebae in Chile. Eur. J. Protistol. 51(5), 409–424 (2015) Yang, J.; Tighe, S.: A review of advances of nanotechnology in asphalt mixtures. Proc. Soc. Behav. Sci. 96, 1269–1276 (2013) Yao, H.; You, Z.; Li, L.; Lee, C.H.; Wingard, D.; Yap, Y.K.; Shi, X.; Goh, S.W.: Rheological properties and chemical bonding of asphalt modified with nanosilica. J. Mater. Civ. Eng. 25(11), 1619–1630 (2012) Guo, W.; Guo, X.; Chang, M.; Dai, W.: Evaluating the effect of hydrophobic nanosilica on the viscoelasticity property of asphalt and asphalt mixture. Materials 11(11), 2328 (2018) Griffith, P.J.; Herron, W.; Harkness, B.R.; Taylor, R.M.; Wilson, D.J.: Method for preparing hydrophobic fumed silica. Google Patents (1999) Akhavan, B.; Jarvis, K.; Majewski, P.: Tuning the hydrophobicity of plasma polymer coated silica particles. Powder Technol. 249, 403–411 (2013) Jang, H.D.; Kil, D.S.; Chang, H.; Cho, K.; Kim, S.K.; Oh, K.J.: Preparation of hydrophobic nanostructured silica particles by aerosol assisted self-assembly. In: 10th IEEE International Conference on Nanotechnology. IEEE, pp. 511–514 (2010) Schubert, J.; Lortz, W.: Hydrophobic precipitated silica. Google Patents (2001) Chen, X.-h; Liu, S.; Sun, L.: Preparation and properties of emulsion asphalt modified by nano-silica/SBR composite. China Rubber Ind. 54(6), 337 (2007) Ziari, H.; Behbahani, H.; Kamboozia, N.; Ameri, M.: New achievements on positive effects of nanotechnology zyco-soil on rutting resistance and stiffness modulus of glasphalt mix. Constr. Build. Mater. 101, 752–760 (2015) Bala, N.; Napiah, M.; Kamaruddin, I.: Nanosilica composite asphalt mixtures performance-based design and optimisation using response surface methodology. Int. J. Pavement Eng. pp. 1–12 (2018) Forschungsgesellschaft für Straßen- und Verkehrswesen: M VB-K. Merkblatt für die Verwendung von pechhaltigen Straßenausbaustoffen und von Asphaltgranulat in bitumengebundenen Tragschichten und durch Kaltaufbereitung in Mischanlagen (FGSV-Nr. 636) (2007) Forschungsgesellschaft für Straßen- und Verkehrswesen: M KRC. Merkblatt für Kaltrecycling in situ im Straßenoberbau (FGSV-Nr. 636) (2005) Association Francaise de Normalisation (AFNOR): NF P98–251–4. Tests relating to pavements—static tests on bituminous mixtures—part 4: modified DURIEZ test on bitumen emulsion based cold mix asphalts (2004) Kamboozia, N.; Ziari, H.; Behbahani, H.: Artificial neural networks approach to predicting rut depth of asphalt concrete by using of visco-elastic parameters. Constr. Build. Mater. 158, 873–882 (2018) Arabani, M.; Haghi, A.K.; Mirabdolazimi, S.M.; Haghgoo, M.: Increment of fatigue resistance of HMA by waste tire thread. 7th International congress on civil engineering. Tehran, Iran (2006) British Standard, Bituminous mixtures – Test methods for hot mix asphalt, Part 12, Determination of the water sensitivity of bituminous specimens,BS EN 12697‑12, European Standard (2008) British Standard, Bituminous mixtures – Test methods for hot mix asphalt, Part 23, Determination of the indirect tensile strength of bituminous specimens, BS EN 12697‑23, European Standard (2003) Miljković, M.; Radenberg, M.: Effect of compaction energy on physical and mechanical performance of bitumen emulsion mortar. Mater. Struct. 49(1–2), 193–205 (2016) Taherkhani, H.; Afroozi, S.: The properties of nanosilica-modified asphalt cement. Pet. Sci. Technol. 34(15), 1381–1386 (2016) Arabani, M.; Haghi, A.K.; Mirabdolazimi, S.M.; Haghgoo, M.: Increment of stiffness modulus in asphaltic pavement by additional of waste tire thread mesh, International seminar on asphalt pavement maintenance technologies, ISSA (2006) Mazhari Pakenari, M.; Hamedi, G.H.: Investigating the effective laboratory parameters on the stiffness modulus and fatigue cracking of warm mix asphalt. Int. J. Civ. Eng. (2021). https://doi.org/10.1007/s40999-020-00592-7