Development trends in silicon photonics for data centers

Optical Fiber Technology - Tập 44 - Trang 13-23 - 2018
Zhiping Zhou1, Ruixuan Chen1, Xinbai Li1, Tiantian Li1
1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Engineering and Computer Science, Peking University, Beijing 100871, China

Tài liệu tham khảo

CISCO, Cisco Global Cloud Index 2015–2020. https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf?dtid=osscdc000283. Zhou, 2015, Silicon photonics for advanced optical interconnections, J. Lightwave Technol., 33, 928, 10.1109/JLT.2014.2377756 Zhou, 2013, Development trends in silicon photonics, Chin. Optics Lett., 11, 012501, 10.3788/COL201311.012501 Y. Développement, Silicon Photonics for Data Centers and Other Applications 2016. https://www.i-micronews.com/report/product/silicon-photonics-for-data-centers-and-other-applications-2016.html. Lam, 2010, Fiber optic communication technologies: what’s needed for datacenter network operations, IEEE Commun. Mag., 48, 10.1109/MCOM.2010.5496876 Li, 2014, New fiber options for high data rate short reach applications 100G PSM4 Specification. http://www.psm4.org/100G-PSM4-Specification-2.0.pdf. 100G CWDM4 MSA Technical Specifications. http://www.cwdm4-msa.org/wp-content/uploads/2015/12/CWDM4-MSA-Technical-Spec-1p1-1.pdf. 100G CLR4 Final Technical Specifications. https://www.clr4-alliance.org/media/doc/100G-CLR4-Specification_v1p52_FINAL. OCP OpenOptics Design Guide. http://www.openopticsmsa.org/pdf/Open_Optics_Design_Guide.pdf. Thomson, 2016, Roadmap on silicon photonics, J. Opt., 18, 073003, 10.1088/2040-8978/18/7/073003 G. Li, D. Lambert, J. Zyskind, J. Spann, M. Askari, G. Pickrell, M. Sodagar, and S. Krasulick, 100Gb/s CWDM transmitter and receiver chips on a monolithic Si-photonics platform, 2016 IEEE 13th International Conference on Group IV Photonics (GFP) (2016) 164–165. Uenuma, 2009, Temperature-independent silicon waveguide optical filter, Opt. Lett., 34, 599, 10.1364/OL.34.000599 Way, 2016, Short-haul transmission links based on 25- and 56-Gbaud PAM4 modulation, Proc. SPIE, 9775 Zhou, 2015, On-chip light sources for silicon photonics, Light: Sci. Appl., 4, e358, 10.1038/lsa.2015.131 Niklaus, 2001, Low-temperature full wafer adhesive bonding, J. Micromech. Microeng., 11, 100, 10.1088/0960-1317/11/2/303 Van Campenhout, 2007, Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si, J. Lightwave Technol., 25, 1543, 10.1109/JLT.2007.895552 Hong, 2010, A selective-area metal bonding InGaAsP–Si laser, IEEE Photonics Technol. Lett., 22, 1141, 10.1109/LPT.2010.2050683 Hong, 2012, Bonding InGaAsP/ITO/Si hybrid laser with ITO as cathode and light-coupling material, IEEE Photonics Technol. Lett., 24, 712, 10.1109/LPT.2012.2187328 Keyvaninia, 2013, Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate, Opt. Mater. Express, 3, 35, 10.1364/OME.3.000035 Groenert, 2003, Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers, J. Appl. Phys., 93, 362, 10.1063/1.1525865 Chriqui, 2004, Direct growth of GaAs-based structures on exactly (001)-oriented Ge/Si virtual substrates: reduction of the structural defect density and observation of electroluminescence at room temperature under CW electrical injection, J. Cryst. Growth, 265, 53, 10.1016/j.jcrysgro.2004.01.038 E. Tournie, J.R. Reboul, K. Madiomanana, L. Cerutti, and J.B. Rodriguez, GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1. 55 m at Room Temperature, Asia Communications and Photonics Conference, Optical Society of America (2012), pp. AS1H. 5. Chang, 2007, 1310 nm silicon evanescent laser, Opt. Express, 15, 11466, 10.1364/OE.15.011466 Ben Bakir, 2011, Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers, Opt. Express, 19, 10317, 10.1364/OE.19.010317 Jang, 2016, A hybrid silicon evanescent quantum dot laser, Appl. Phys. Express, 9, 092102, 10.7567/APEX.9.092102 Alexander, 2008, A distributed feedback silicon evanescent laser, Opt. Express, 16, 4413, 10.1364/OE.16.004413 Hiratani, 2015, Room-temperature continuous-wave operation of membrane distributed-reflector laser, Appl. Phys. Express, 8, 112701, 10.7567/APEX.8.112701 Jiang, 2015, Quantum dot optoelectronic devices: lasers, photodetectors and solar cells, J. Phys. D: Appl. Phys., 48 Wan, 2016, Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon, Opt. Lett., 41, 1664, 10.1364/OL.41.001664 Chen, 2016, Electrically pumped continuous-wave III–V quantum dot lasers on silicon, Nat. Photonics, 10.1038/nphoton.2016.21 Wan, 2017, O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si, Opt. Express, 25, 26853, 10.1364/OE.25.026853 Liu, 2017, Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si, Opt. Lett., 42, 338, 10.1364/OL.42.000338 Wang, 2011, Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits, Opt. Express, 19, 2006, 10.1364/OE.19.002006 Jain, 2011, Integrated hybrid silicon DFB laser-EAM array using quantum well intermixing, Opt. Express, 19, 13692, 10.1364/OE.19.013692 Urino, 2014, High-density optical interconnects by using silicon photonics, SPIE OPTO, Int. Soc. Opt. Photonics Intel Silicon Photonics Products. https://www.intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/silicon-photonics-overview.html. De Dobbelaere, 2014, Packaging of silicon photonics systems, optical fiber communications conference and exhibition (OFC), IEEE, 2014, 1 Heck, 2013, Hybrid silicon photonic integrated circuit technology, IEEE J. Sel. Topics Quantum Electron., 19, 6100117, 10.1109/JSTQE.2012.2235413 Pavarelli, 2015, Optical and electronic packaging processes for silicon photonic systems, J. Lightwave Technol., 33, 991, 10.1109/JLT.2015.2390675 Dangel, 2015, Polymer waveguides for electro-optical integration in data centers and high-performance computers, Opt. Express, 23, 4736, 10.1364/OE.23.004736 Koch, 2013, Integrated silicon photonic laser sources for telecom and datacom Guha, 2010, Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers, Opt. Express, 18, 1879, 10.1364/OE.18.001879 Arbabi, 2013, Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances, Opt. Lett., 38, 3878, 10.1364/OL.38.003878 Horst, 2013, Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing, Opt. Express, 21, 11652, 10.1364/OE.21.011652 Jeong, 2014, Si-nanowire-based multistage delayed Mach-Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer, Opt. Lett., 39, 3702, 10.1364/OL.39.003702 Deng, 2016, Athermal and flat-topped silicon Mach-Zehnder filters, Opt. Express, 24, 29577, 10.1364/OE.24.029577 Wang, 2012, Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides, Appl. Opt., 51, 1251, 10.1364/AO.51.001251 Zhou, 2009, Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding, IEEE Photonics Technol. Lett., 21, 1175, 10.1109/LPT.2009.2023522 Huang, 2010, Design of temperature-independent arrayed waveguide gratings based on the combination of multiple types of waveguide, Appl. Opt., 49, 3025, 10.1364/AO.49.003025 Xu, 2008, Silicon microring resonators with 1.5-µm radius, Opt. Express, 16, 4309, 10.1364/OE.16.004309 Zhou, 2015, Lowering the energy consumption in silicon photonic devices and systems, Photonics Res., 3.5, B28, 10.1364/PRJ.3.000B28 Raghunathan, 2010, Athermal operation of silicon waveguides: spectral, second order and footprint dependencies, Opt. Express, 18, 17631, 10.1364/OE.18.017631 Guha, 2010, CMOS-compatible athermal silicon microring resonators, Opt. Express, 18, 3487, 10.1364/OE.18.003487 Deng, 2014, Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators, Photonics Res., 2, 71, 10.1364/PRJ.2.000071 Kokubun, 1993, Athermal waveguides for temperature-independent lightwave devices, IEEE Photonics Technol. Lett., 5, 1297, 10.1109/68.250049 Lee, 2007, Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer, J. Lightwave Technol., 25, 2236, 10.1109/JLT.2007.899792 Winnie, 2008, Athermal high-index-contrast waveguide design, IEEE Photonics Technol. Lett., 20, 885, 10.1109/LPT.2008.922338 Teng, 2009, Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides, Opt. Express, 17, 14627, 10.1364/OE.17.014627 Milošević, 2011, Athermal waveguides for optical communication wavelengths, Opt. Lett., 36, 4659, 10.1364/OL.36.004659 Djordjevic, 2013, CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide, Opt. Express, 21, 13958, 10.1364/OE.21.013958 Guha, 2013, Athermal silicon microring resonators with titanium oxide cladding, Opt. Express, 21, 26557, 10.1364/OE.21.026557 Lee, 2008, Controlling temperature dependence of silicon waveguide using slot structure, Opt. Express, 16, 1645, 10.1364/OE.16.001645 Sherwood-Droz, 2008, Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC), Opt. Express, 16, 15915, 10.1364/OE.16.015915 M.R. Watts, W.A. Zortman, D.C. Trotter, G.N. Nielson, D.L. Luck, and R.W. Young, Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics, Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009. Conference on, IEEE (2009) 1–2. Ng, 2008, 4× 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators, Opt. Eng., 47, 044601, 10.1117/1.2909662 Geng, 2009, Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide, Opt. Express, 17, 5502, 10.1364/OE.17.005502 Gan, 2007, Maximizing the thermo-optic tuning range of silicon photonic structures, Photonics in Switching, IEEE, 2007, 67 Dong, 2010, Thermally tunable silicon racetrack resonators with ultralow tuning power, Opt. Express, 18, 20298, 10.1364/OE.18.020298 Cunningham, 2010, Highly-efficient thermally-tuned resonant optical filters, Opt. Express, 18, 19055, 10.1364/OE.18.019055 Fang, 2012, High efficiency ring-resonator filter with NiSi heater, IEEE Photonics Technol. Lett., 24, 350, 10.1109/LPT.2011.2177816 Chaisakul, 2014, Recent progress in GeSi electro-absorption modulators, Sci. Technol. Adv. Mater., 15, 014601, 10.1088/1468-6996/15/1/014601 J. Michel, J. Liu, L.C. Kimerling, R. Sun, A. Pomerene, M. Beals, J. Cheng, and S. Bernardis, Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators 2 (2008) 433–437. Michel, 2010, High-performance Ge-on-Si photodetectors, Nat. Photonics, 4, 527, 10.1038/nphoton.2010.157 Chaisakul, 2012, 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator, Opt. Express, 20, 3219, 10.1364/OE.20.003219 Ren, 2012, Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides, IEEE Photonics Technol. Lett., 24, 461, 10.1109/LPT.2011.2181496 A. Srinivasan, P. Verheyen, R. Loo, I.D. Wolf, and M. Pantouvaki, 50 Gb/s C-band GeSi Waveguide Electro-Absorption Modulator. Optical Fiber Communication Conference (2016). Srinivasan, 2016, 56 Gb/s germanium waveguide electro-absorption modulator, J. Lightwave Technol., 34, 419, 10.1109/JLT.2015.2478601 Lee, 2016, Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer, AIP Adv., 6, 025028, 10.1063/1.4943218 Littlejohns, 2016, Localised tuneable composition single crystal silicon-germanium-on-insulator for low cost devices, Adv. Mater. Sci. Eng., 2016, 1, 10.1155/2016/4154256 F.Y. Gardes, C.G. Littlejohns, M. Nedeljkovic, T.B. Dominguez, and N. Hattasan, Group IV compounds for integrated photonic applications. Group IV Photonics (GFP), 2016 IEEE 13th International Conference on. IEEE (2016). Dong, 2009, Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator, Opt. Express, 17, 22484, 10.1364/OE.17.022484 Rosenberg, 2012, A 25 Gbps silicon microring modulator based on an interleaved junction, Opt. Express, 20, 26411, 10.1364/OE.20.026411 Li, 2014, Low loss, high-speed single-mode half-disk resonator, Opt. Lett., 39, 3810, 10.1364/OL.39.003810 Timurdogan, 2014, An ultralow power athermal silicon modulator, Nat. Commun., 5, 10.1038/ncomms5008 Tanaka, 2015, Wide-temperature-range, 25-Gbps error-free operation of integrated silicon photonic transmitter using wavelength-controlled micro ring modulator, Eur. Conf. Opt. Commun. (ECOC), 2015, 1 Padmaraju, 2014, Wavelength locking and thermally stabilizing microring resonators using dithering signals, J. Lightwave Technol., 32, 505, 10.1109/JLT.2013.2294564 Lin, 2016, Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit, Opt. Fiber Commun. Conf., 10.1364/OFC.2016.Th3J.4 Sun, 2010, Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides, Opt. Express, 18, 8406, 10.1364/OE.18.008406 M. A., P. M., L. G., V. P., V.C. J., A. P., V.T. D., and B. W., Comparison of heater architectures for thermal control of silicon photonic circuits, 10th International Conference on Group IV Photonics (2013) 83–84. Padmaraju, 2014, Resolving the thermal challenges for silicon microring resonator devices, Nanophotonics, 3, 10.1515/nanoph-2013-0013 Luo, 2016, A process-tolerant ring modulator based on multi-mode waveguides, IEEE Photonics Technol. Lett., 28, 1391, 10.1109/LPT.2016.2544138 Baehr-Jones, 2012, Ultralow drive voltage silicon traveling-wave modulator, Opt. Express, 20, 12014, 10.1364/OE.20.012014 Ding, 2012, Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator, Opt. Express, 20, 7081, 10.1364/OE.20.007081 Ding, 2013, Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator, J. Lightwave Technol., 31, 2434, 10.1109/JLT.2013.2262522 Bahrami, 2016, Time-domain large-signal modeling of traveling-wave modulators on SOI, J. Lightwave Technol., 34, 2812, 10.1109/JLT.2016.2551702 Zhu, 2015, Design considerations for traveling-wave modulator-based CMOS photonic transmitters, IEEE Trans. Circuits Syst. II Express Briefs, 62, 412, 10.1109/TCSII.2014.2387682 Petousi, 2015, Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation, IEEE J. Sel. Top. Quantum Electron., 21, 199, 10.1109/JSTQE.2014.2369516 Xiao, 2016, Substrate removed silicon Mach-Zehnder modulator for high baud rate optical intensity modulations M. Caverley, H. Yun, L. Chrostowski, and N.A. Jaeger, A low-power biasing scheme for silicon-on-insulator traveling-wave modulators, 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (2015) 141–142. Pantouvaki, 2017, Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform, J. Lightwave Technol., 35, 631, 10.1109/JLT.2016.2604839 Qi, 2016, Co-design and demonstration of a 25-Gb/s silicon-photonic Mach-Zehnder modulator with a CMOS-based high-swing driver, IEEE J. Sel. Topics Quantum Electron., 22, 131, 10.1109/JSTQE.2016.2602102 Patel, 2014, High-speed compact silicon photonic Michelson interferometric modulator, Opt. Express, 22, 26788, 10.1364/OE.22.026788 M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, and S. Sunder, An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters. Group IV Photonics (GFP), 2014 IEEE 11th International Conference on. IEEE (2014). Webster, 2015, Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers Li, 2017, Single-drive high-speed lumped depletion-type modulators toward 10 f J/bit energy consumption, Photonics Res., 5, 134, 10.1364/PRJ.5.000134 Kachris, 2012, A survey on optical interconnects for data centers, IEEE Commun. Surv. Tutorials, 14, 1021, 10.1109/SURV.2011.122111.00069 Cisco, 2015. Cisco Global Cloud Index: Forecast and Methodology, 2014–2019. [online]. Ferdaus, 2017, An algorithm for network and data-aware placement of multi-tier applications in cloud data centers, J. Network Comput. Appl., 98, 65, 10.1016/j.jnca.2017.09.009 Li, 2013, Low-voltage, high speed, compact silicon modulator for BPSK modulation, Opt. Express, 21, 23410, 10.1364/OE.21.023410 Yi, 2012, Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission, Opt. Express, 20, 27562, 10.1364/OE.20.027562 Liu, 2010, Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform, IEEE J. Sel. Top. Quantum Electron., 16, 23, 10.1109/JSTQE.2009.2033454 Ramaswamy, 2015, A WDM 4 × 28 Gbps integrated silicon photonic transmitter driven by 32 nm CMOS driver ICs Chen, 2015, Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation Traverso, 2015, 25 GBaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics Sadot, 2015, Single channel 112 Gbit/sec PAM4 at 56 Gbaud with digital signal processing for data centers applications, Opt. Express, 23, 991, 10.1364/OE.23.000991 Dong, 2016, Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits, J. Lightwave Technol., 34, 79, 10.1109/JLT.2015.2500718 C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch, and W.M. Green, A monolithic 56 Gb/s CMOS integrated nanophotonic PAM-4 transmitter, Optical Interconnects Conference (OI), 2015 IEEE, IEEE (2015) 16–17. S. Palermo, P. Chiang, C. Li, C. Chen, M. Fiorentino, R. Beausoleil, H. Li, K. Yu, B. Wang, and R. Bai, Silicon photonic microring resonator-based transceivers for compact WDM optical interconnects, Compound Semiconductor Integrated Circuit Symposium (CSICS), 2015 IEEE, IEEE (2015) 1–4. M. Poulin, C. Latrasse, J. Gagné, Y. Painchaud, M. Cyr, C. Paquet, M. Morsy-Osman, M. Chagnon, S. Lessard, and D.V. Plant, 107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm, Optical Communication (ECOC), 2014 European Conference on, IEEE (2014) 1–3. N. Eiselt, H. Griesser, M. Eiselt, W. Kaiser, S. Aramideh, J.J.V. Olmos, I.T. Monroy, and J. Elbers, Real-time 200 Gb/s (4 × 56.25 Gb/s) PAM-4 transmission over 80 km SSMF using quantum-dot laser and silicon ring-modulator, Optical Fiber Communications Conference and Exhibition (OFC), 2017, IEEE (2017) 1–3. Li, 2014, Demonstration of 6.25 Gbaud advanced modulation formats with subcarrier multiplexed technique on silicon Mach-Zehnder modulator, Opt. Express, 22, 19818, 10.1364/OE.22.019818 Dong, 2016, Ten-channel discrete multi-tone modulation using silicon microring modulator array Jia, 2017, Microring modulator matrix integrated with mode multiplexer and de-multiplexer for on-chip optical interconnect, Opt. Express, 25, 422, 10.1364/OE.25.000422