A hybrid DEM-SPH model for deformable landslide and its generated surge waves

Advances in Water Resources - Tập 108 - Trang 256-276 - 2017
Hai Tan1, Shenghong Chen1
1State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

Tài liệu tham khảo

Abadie, 2010, Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model, Coast. Eng., 57, 779, 10.1016/j.coastaleng.2010.03.003 Anderson, 1967, Fluid mechanical description of fluidized beds. Equations of motion, Ind. Eng. Chem. Fundam., 6, 527, 10.1021/i160024a007 Antuono, 2012, Numerical diffusive terms in weakly-compressible SPH schemes, Comput. Phys. Commun., 183, 2570, 10.1016/j.cpc.2012.07.006 Ataie‐Ashtiani, 2008, Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics, Int. J. Numer. Methods Fluids, 56, 209, 10.1002/fld.1526 Canelas, 2016, SPH–DCDEM model for arbitrary geometries in free surface solid–fluid flows, Comput. Phys. Commun., 202, 131, 10.1016/j.cpc.2016.01.006 Capone, 2010, SPH modelling of water waves generated by submarine landslides, J. Hydraul. Res., 48, 80, 10.1080/00221686.2010.9641248 Chambon, 2011, Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics, J. Non-Newton. Fluid Mech., 166, 698, 10.1016/j.jnnfm.2011.03.007 Cremonesi, 2011, A Lagrangian finite element approach for the simulation of water-waves induced by landslides, Comput. Struct., 89, 1086, 10.1016/j.compstruc.2010.12.005 Crespo, 2007, Boundary conditions generated by dynamic particles in SPH methods, Comput. Mater. Contin., 5, 173 Crosta, 2016, Landslide spreading, impulse water waves and modelling of the Vajont rockslide, Rock Mech. Rock Eng., 49, 2413, 10.1007/s00603-015-0769-z Cundall, 1979, A discrete numerical model for granular assemblies, Geotechnique, 29, 47, 10.1680/geot.1979.29.1.47 Dai, 2014, 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake, Eng. Geol., 180, 21, 10.1016/j.enggeo.2014.03.018 Dallavalle, 1948 Di Felice, 1994, The voidage function for fluid-particle interaction systems, Int. J. Multiph. Flow, 20, 153, 10.1016/0301-9322(94)90011-6 Ergun, 1952, Fluid flow through packed columns, Chem. Eng. Prog., 48, 89 Fritz, 2001, Lituya Bay case: rockslide impact and wave run-up, Sci. Tsunami Hazards, 19, 3 Fritz, 2003, Landslide generated impulse waves, Part 1: instantaneous flow fields, Exp. Fluids, 35, 505, 10.1007/s00348-003-0659-0 Fritz, 2003, Landslide generated impulse waves, Part 2: hydrodynamic impact craters, Exp. Fluids, 35, 520, 10.1007/s00348-003-0660-7 Gingold, 1977, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375, 10.1093/mnras/181.3.375 Gomez-Gesteira, 2012, SPHysics–development of a free-surface fluid solver–Part 1: theory and formulations, Comput. Geosci., 48, 289, 10.1016/j.cageo.2012.02.029 Gómez-Gesteira, 2012, SPHysics–development of a free-surface fluid solver–Part 2: Efficiency and test cases, Comput. Geosci., 48, 300, 10.1016/j.cageo.2012.02.028 Grilli, 1999, Modeling of waves generated by a moving submerged body. Applications to underwater landslides, Eng. Anal. Bound. Elem., 23, 645, 10.1016/S0955-7997(99)00021-1 Guandalini, 2015, SPH based approach toward the simulation of non-cohesive sediment removal by an innovative technique using a controlled sequence of underwater micro-explosions, Procedia IUTAM, 18, 28, 10.1016/j.piutam.2015.11.004 Heinrich, 1992, Nonlinear water waves generated by submarine and aerial landslides, J. Waterw. Port Coast. Ocean Eng., 118, 249, 10.1061/(ASCE)0733-950X(1992)118:3(249) Heller, 2007 Heller, 2016, Composite modelling of subaerial landslide–tsunamis in different water body geometries and novel insight into slide and wave kinematics, Coast. Eng., 109, 20, 10.1016/j.coastaleng.2015.12.004 Huang, 2012, Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics, Landslides, 9, 275, 10.1007/s10346-011-0285-5 2004 Komoróczi, 2013, Meshless numerical modeling of brittle–viscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH), Comput. Geosci., 17, 373, 10.1007/s10596-012-9335-x Koshizuka, 1995 Lin, 2015, Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method, Eng. Geol., 197, 172, 10.1016/j.enggeo.2015.08.022 Liu, 2003 Lo, 2011, A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit, Eng. Geol., 123, 22, 10.1016/j.enggeo.2011.07.002 Lucy, 1977, A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013, 10.1086/112164 Ma, 2015, A two-layer granular landslide model for tsunami wave generation: theory and computation, Ocean Model., 93, 40, 10.1016/j.ocemod.2015.07.012 Manenti, 2012, SPH simulation of sediment flushing induced by a rapid water flow, J. Hydraul. Eng., 138, 272, 10.1061/(ASCE)HY.1943-7900.0000516 Manenti, 2015, Vajont disaster: smoothed particle hydrodynamics modeling of the postevent 2D experiments, J. Hydraul. Eng., 142, 10.1061/(ASCE)HY.1943-7900.0001111 Markauskas, 2017, Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow, Powder Technol., 305, 78, 10.1016/j.powtec.2016.09.052 Marrone, 2011, δ-SPH model for simulating violent impact flows, Comput. Methods Appl. Mech. Eng., 200, 1526, 10.1016/j.cma.2010.12.016 Martin, 1952, An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., 244, 312, 10.1098/rsta.1952.0006 Molteni, 2009, A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Comput. Phys. Commun., 180, 861, 10.1016/j.cpc.2008.12.004 Monaco, 2011, SPH modeling of solid boundaries through a semi-analytic approach, Eng. Appl. Comput. Fluid Mech., 5, 1 Monaghan, 1992, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543, 10.1146/annurev.aa.30.090192.002551 Monaghan, 1994, Simulating free surface flows with SPH, J. Comput. Phys., 110, 399, 10.1006/jcph.1994.1034 Morris, 1997, Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 214, 10.1006/jcph.1997.5776 Panizzo, 2005, Great landslide events in Italian artificial reservoirs, Nat. Hazards Earth Syst. Sci., 5, 733, 10.5194/nhess-5-733-2005 Potapov, 2001, Liquid–solid flows using smoothed particle hydrodynamics and the discrete element method, Powder Technol., 116, 204, 10.1016/S0032-5910(00)00395-8 Ren, 2014, SPH-DEM modeling of the hydraulic stability of 2D blocks on a slope, J. Waterw. Port Coast. Ocean Eng., 140, 10.1061/(ASCE)WW.1943-5460.0000247 Robinson, 2014, Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation, Int. J. Multiph. Flow, 59, 121, 10.1016/j.ijmultiphaseflow.2013.11.003 Rzadkiewicz, 1997, Numerical simulation of submarine landslides and their hydraulic effects, J. Waterw. Port Coast. Ocean Eng., 123, 149, 10.1061/(ASCE)0733-950X(1997)123:4(149) Sælevik, 2009, Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway, Coast. Eng., 56, 897, 10.1016/j.coastaleng.2009.04.007 Shan, 2014, A coupled CFD-DEM analysis of granular flow impacting on a water reservoir, Acta Mech., 225, 2449, 10.1007/s00707-014-1119-z Shi, 2016, Numerical simulation of landslide-generated waves using a soil–water coupling smoothed particle hydrodynamics model, Adv. Water Res., 92, 130, 10.1016/j.advwatres.2016.04.002 Sun, 2013, Three-dimensional simulation of a solid–liquid flow by the DEM–SPH method, J. Comput. Phys., 248, 147, 10.1016/j.jcp.2013.04.019 Tang, 2009, The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation, Eng. Geol., 106, 1, 10.1016/j.enggeo.2009.02.011 Topin, 2012, Collapse dynamics and runout of dense granular materials in a fluid, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.188001 Vacondio, 2013, 3D SPH numerical simulation of the wave generated by the Vajont rockslide, Adv. Water Res., 59, 146, 10.1016/j.advwatres.2013.06.009 Viroulet, 2013, Shallow water waves generated by subaerial solid landslides, Geophys. J. Int., 193, 747, 10.1093/gji/ggs133 Viroulet, 2013, Granular collapse into water: toward tsunami landslides, J. Vis., 16, 189, 10.1007/s12650-013-0171-4 Viroulet, 2014, Tsunami generated by a granular collapse down a rough inclined plane, Europhys. Lett., 105, 34004, 10.1209/0295-5075/105/34004 Viroulet, 2016, Tsunami waves generated by cliff collapse: comparison between experiments and triphasic simulations, 173 Walder, 2003, Tsunamis generated by subaerial mass flows, J. Geophys. Res.: Solid Earth, 108, 2236, 10.1029/2001JB000707 Wang, 2016, Analysis of landslide-generated impulsive waves using a coupled DDA-SPH method, Eng. Anal. Bound. Elem., 64, 267, 10.1016/j.enganabound.2015.12.014 Wen, 1966, Mechanics of fluidization, Chem. Eng. Prog. Symp. Ser., 62, 100 Wu, 2016, A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure, Comput. Struct., 177, 141, 10.1016/j.compstruc.2016.08.012 Yavari-Ramshe, 2016, Numerical modeling of subaerial and submarine landslide-generated tsunami waves—recent advances and future challenges, Landslides, 13, 1325, 10.1007/s10346-016-0734-2 Zhang, 2009, Simulation of solid–fluid mixture flow using moving particle methods, J. Comput. Phys., 228, 2552, 10.1016/j.jcp.2008.12.005