Review of heat transport properties of solar heat transfer fluids

Journal of Thermal Analysis and Calorimetry - Tập 130 - Trang 605-621 - 2017
Umish Srivastva1, R. K. Malhotra1, S. C. Kaushik2
1Indian Oil Corporation Limited, R&D Centre, Faridabad, India
2Indian Institute of Technology Delhi, New Delhi, India

Tóm tắt

The present article reviews the test techniques for some of the important heat transport properties of oils such as viscosity, density, specific heat capacity and thermal conductivity mainly used for characterization of heat transfer fluids. It can be seen that while density of oils can be tested at higher temperatures, the other heat transport properties of oils like viscosity, specific heat capacity and thermal conductivity have a limitation of being tested at low temperatures below 100–150 °C. While quite a few number of researchers have reported evaluation of heat transfer properties like specific heat capacity and thermal conductivity of oils by different methods, there remains a huge scope of debate and discussions on the repeatability and reproducibility of such tests, especially in case of oils used in high-temperature applications. A lot of insight has been gathered with respect to testing of thermal conductivity of oils, and several common test methods have been compared with each other. Lastly, two mathematical models, reported in the literature in open domain, have been reviewed and compared with each other. If the oils are to be used at elevated temperatures, like heat transfer fluids used in concentrated solar power generation where temperatures go as high as 400 °C and beyond, there is an urgent need to standardize a laboratory test method for performance evaluation of heat transport properties, which can help in formulating new generation oils based on novel chemistries and technologies like nanofluids, synthetic oils of novel chemistries, molten salts and molten metals.

Tài liệu tham khảo