Impact of solvent properties on post-combustion carbon capture processes: A vapor–liquid equilibrium modelling approach

Chemical Engineering Science: X - Tập 10 - Trang 100095 - 2021
He Jin1, Pei Liu1, Zheng Li1
1State Key Lab of Power Systems, International Joint Laboratory on Low Carbon Clean Energy Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

Tài liệu tham khảo

Baburao, B.K., TN, US), Schubert, Craig (Lake Jackson, TX, US), 2013. Advanced intercooling and recycling in CO2 absorption. Alstom Technology Ltd (Baden, CH), Dow Global Technologies LLC (Midland, MI, US), United States. Chen, 2011, Accurate screening of amines by the Wetted Wall Column, Energy Procedia, 4, 101, 10.1016/j.egypro.2011.01.029 Chen, 2018, A power generation system with integrated supercritical water gasification of coal and CO2 capture, Energy, 142, 723, 10.1016/j.energy.2017.10.077 Chowdhury, 2013, Synthesis and characterization of new absorbents for CO2 capture, Energy Procedia, 37, 265, 10.1016/j.egypro.2013.05.111 Cousins, 2011, Analysis of combined process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption, Energy Procedia, 4, 1331, 10.1016/j.egypro.2011.01.191 Cousins, 2011, A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption, Int. J. Greenhouse Gas Control, 5, 605, 10.1016/j.ijggc.2011.01.002 Davison, 2007, Performance and costs of power plants with capture and storage of CO2, Energy, 32, 1163, 10.1016/j.energy.2006.07.039 Ermatchkov, 2006, Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine in the low gas loading region, Ind. Eng. Chem. Res., 45, 6081, 10.1021/ie0604270 Goto, 2011, Development of novel absorbents for CO2 capture from blast furnace gas, Int. J. Greenhouse Gas Control, 5, 1214, 10.1016/j.ijggc.2011.06.006 Goto, 2013, A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture, Appl. Energy, 111, 710, 10.1016/j.apenergy.2013.05.020 Hopkinson, 2014, Solvent Optimization of conventional absorption processes for CO2 capture from postcombustion flue gases, Ind. Eng. Chem. Res., 53, 7149, 10.1021/ie403869y Jin, 2018, Energy-efficient process intensification for post-combustion CO 2 capture: a modeling approach, Energy, 158, 471, 10.1016/j.energy.2018.06.045 Jou, 1985, Equilibria of H2S and CO2 in triethanolamine solutions, Can. J. Chem. Eng., 63, 122, 10.1002/cjce.5450630119 Jou, F.Y., Mather, A.E., Otto, F.D., 1995. The solubility of CO2 in a 30 mass percent monoethanolamine solution. 73(1), 140–147. Kim, 2016, Design guidance for an energy-thrift absorption process for carbon capture: analysis of thermal energy consumption for a conventional process configuration, Int. J. Greenhouse Gas Control, 47, 291, 10.1016/j.ijggc.2016.02.003 Kvamsdal, 2009, Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture, Chem. Eng. Process. Process Intensif., 48, 135, 10.1016/j.cep.2008.03.002 Lawson, 1976, Gas sweetening data: equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous monoethanolamine and aqueous diethanolamine solutions, J. Chem. Eng. Data, 21, 20, 10.1021/je60068a010 Le Moullec, 2011, Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture, Int. J. Greenhouse Gas Control, 5, 727, 10.1016/j.ijggc.2011.03.004 Le Moullec, 2014, Process modifications for solvent-based post-combustion CO 2 capture, Int. J. Greenhouse Gas Control, 31, 96, 10.1016/j.ijggc.2014.09.024 Li, J., Zhang, Y., Tian, Y., Cheng, W., Yang, J., Xu, D., Wang, Y., Xie, K., Ku, A.Y., 2020. Reduction of carbon emissions from China's coal-fired power industry: insights from the province-level data. J. Cleaner Prod. 242, 118518. Li, 2016, Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements, Appl. Energy, 165, 648, 10.1016/j.apenergy.2015.12.109 Li, 2016, Verification of a solvent optimization approach for postcombustion CO2 capture using commercial alkanolamines, Int. J. Greenhouse Gas Control, 44, 59, 10.1016/j.ijggc.2015.11.002 Mathias, 2016, The Gibbs-Helmholtz equation in chemical process technology, Ind. Eng. Chem. Res., 55, 1076, 10.1021/acs.iecr.5b03405 Mores, 2012, CO 2 capture using monoethanolamine (MEA) aqueous solution: modeling and optimization of the solvent regeneration and CO 2 desorption process, Energy, 45, 1042, 10.1016/j.energy.2012.06.038 N.Borhani, T., Wang, M., 2019. Role of solvents in CO2 capture processes: the review of selection and design methods. Renewable Sustainable Energy Rev. 114, 109299. Oexmann, 2010, Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: the misguided focus on low heat of absorption solvents, Int. J. Greenhouse Gas Control, 4, 36, 10.1016/j.ijggc.2009.09.010 Oh, 2020, Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes, Energy, 206, 10.1016/j.energy.2020.118164 Oyenekan, 2006, Energy performance of stripper configurations for CO2 capture by aqueous amines, Ind. Eng. Chem. Res., 45, 2457, 10.1021/ie050548k Oyenekan, 2007, Alternative stripper configurations for CO2 capture by aqueous amines, AIChE J., 53, 3144, 10.1002/aic.11316 Roberts, 2007, Solubility of CO2 and H2S in a hindered amine solution, Chem. Eng. Commun. Versteeg, 2007, On the kinetics between Co2 and alkanolamines both in aqueous and non-aqueous solutions. An overview, Chem. Eng. Commun., 144, 113, 10.1080/00986449608936450 Wang, 2011, Post-combustion CO2 capture with chemical absorption: a state-of-the-art review, Chem. Eng. Res. Des., 89, 1609, 10.1016/j.cherd.2010.11.005 Yi, 2015, Carbon cycle in advanced coal chemical engineering, Chem. Soc. Rev., 44, 5409, 10.1039/C4CS00453A