Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator
Tóm tắt
Polyhydroxyalkanoates (PHAs) are biopolymers, which can replace petrochemical plastics in many applications. However, these bioplastics are currently far more expensive than petrochemical plastics. Many researchers are investigating the use of inexpensive substrates derived from waste streams. Waste frying oil is abundant and can be used in PHA production without filtration.
Cupriavidus necator (formerly known as Ralstonia eutropha) is a versatile organism for the production of PHAs. Small-scale batch fermentation studies have been set up, using different concentrations of pure vegetable oil, heated vegetable oil and waste frying oil. These oils are all rapeseed oils. It has been shown that Cupriavidus necator produced the homopolymer polyhydroxybutyrate (PHB) from the rapeseed oils. The achieved PHB concentration from waste frying oil was 1.2 g/l, which is similar to a concentration that can be obtained from glucose. The PHB harvest from pure oil and heated oil was 0.62 g/l and 0.9 g/l respectively. A feed of waste frying oil could thus achieve more biopolymer than pure vegetable oil. While the use of a waste product is beneficial from a life-cycle perspective, PHB is not the only product that can be made from waste oil. The collection of waste frying oil is becoming more widespread, making waste oil a good alternative to purified oil or glucose for PHB production.
Tài liệu tham khảo
Alias Z, Tan IKP: Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresour Technol 2005, 96: 1229–1234. 10.1016/j.biortech.2004.10.012
D and Elmadfa I: Frying of Food: Oxidation, Nutrient and Non-Nutrient Antioxidants, Biologically Active Compounds and High Temperatures. CRC Press, New York; 1999.
Braunegg G, Sonnleitner B, Lafferty RM: A rapid gas chromatographic method for the determination of poly-beta-hydroxybutyric acid in microbial biomass. Appl Microbiol Biotechnol 1978, 6: 29–37. 10.1007/BF00500854
Budde CF, Riedel SL, Hübner F, Risch S, Popović MK, Rha CK, Sinskey AJ: Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 2011, 89: 1611–9. 10.1007/s00253-011-3102-0
Castilho LR, Mitchell DA, Freire DMG: Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 2009, 100: 5996–6009. 10.1016/j.biortech.2009.03.088
Choe E, Min DB: Chemistry of Deep-Fat Frying Oils. J Food Sci 2007, 72: R77-R86. 10.1111/j.1750-3841.2007.00352.x
Costa RM, Oliveira FAR, Boutcheva G: Structural changes and shrinkage of potato during frying. Int J Food Sci Technol 2001, 36: 11–23. 10.1046/j.1365-2621.2001.00413.x
Fernández D, Rodriguéz E, Bassas M, Viñas M, Solanas AM, Llorens J, Marqués AM, Manresa A: Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: Effect of culture conditions. Biochem Eng J 2005, 26: 159–167. 10.1016/j.bej.2005.04.022
Jan S, Roblot C, Goethals G, Courtois J, Courtois B, Saucedo JEN, Seguin J-P, Barbotin J-N: Study of Parameters Affecting Poly(3-Hydroxybutyrate) Quantification by Gas Chromatography. Anal Biochem 1994, 225: 258–263.
Kahar P, Tsuge T, Taguchi K, Doi Y: High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 2004, 83: 79–86. 10.1016/S0141-3910(03)00227-1
Khanna S, Srivastava AK: Recent advances in microbial polyhydroxyalkanoates. Process Biochem 2005, 40: 607–619. 10.1016/j.procbio.2004.01.053
Khanna S, Srivastava AK: Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem 2005, 40: 2173–2182. 10.1016/j.procbio.2004.08.011
Koutinas AA, Wang R, Webb C: Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enzym Microbial Technol 2007, 40: 1035–1044. 10.1016/j.enzmictec.2006.08.002
Lee SY: Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 1996, 49: 1–14. 10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.3.CO;2-1
Lemos PC, Serafim LS, Reis MAM: Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol 2006, 122: 226–238. 10.1016/j.jbiotec.2005.09.006
Mumtaz T, Yahaya NA, Abd-Aziz S, Rahman NA, Yee PL, Shirai Y, Hassan MA: J Cleaner Prod. 2010, 18: 1393–1402. 10.1016/j.jclepro.2010.05.016
Obruca S, Marova I, Snajdar O, Svoboda Z: Production of poly(3-hydroxybutyrate- co -3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett 2010, 32: 1925–1932. 10.1007/s10529-010-0376-8
Philip S, Keshavarz T, Roy I: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 2007, 82: 233–247. 10.1002/jctb.1667
Rehm BHA, Kruger N, Steinbüchel A: A New Metabolic Link between Fatty Acid de Novo Synthesis and Polyhydroxyalkanoic Acid Synthesis. J Biol Chem 1998, 273: 24044–24051. 10.1074/jbc.273.37.24044
del Rocio L-CM, Noel G-RJ, Fermin P-G: Production of polyhydroxyalcanoates by Wautersia eutropha using vegetable oils as carbon source. J Biotechnol 2007, 131: S156. 10.1016/j.jbiotec.2007.07.876
Tabee E: Lipid and Phytosterol Oxidation. In Vegetable Oils and Fried Potato Products. PhD thesis. 14. Swedish University of Agricultural Sciences, Uppsala; 2008.
Volova TG, Kalacheva GS: The synthesis of hydroxybutyrate and hydroxyvalerate copolymers by the bacterium Ralstonia eutropha. Microbiology 2005, 74: 54–59. 10.1007/s11021-005-0028-5
Wang J, Yu J: Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. J Ind Microbiol Biotechnol 2001, 26: 121–126. 10.1038/sj.jim.7000097
Wang YJ, Hua FL, Tsang YF, Chan SY, Sin SN, Chua H, Yu PHF, Ren NQ: Synthesis of PHAs from waster under various C:N ratios. Bioresource Technol 2007, 98: 1690–1693. 10.1016/j.biortech.2006.05.039
Wong PAL, Cheung MK, Lo W-H, Chua H, Yu PHF: Investigation of the effects of the types of food waste utilized as carbon source on the molecular weight distributions and thermal properties of polyhydroxy-butyrate produced by two strains of microorganisms. e-Polymers 2004, 031: 1–11.
Yan Q, Sun Y, Ruan LF, Chen J, Yu PHF: Biosynthesis of short-chain-length-polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha . World J Microbiol Biotechnol 2005, 21: 17–21. 10.1007/s11274-004-0877-5
Yu J, Si Y, Keung W, Wong R: Kinetics modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates by Ralstonia eutropha . Process Biochem 2002, 37: 731–738. 10.1016/S0032-9592(01)00264-3