An ultra-low power, low voltage DC-DC converter circuit for energy harvesting applications

Elham Kordetoodeshki1, Alireza Hassanzadeh1
1EE Department, Shahid Beheshti University, Tehran, Iran

Tài liệu tham khảo

Chen PH, Ishida K, Zhang X, Okuma Y, Ryu Y, Takamiya M et al. A 120-mV input, fully integrated dual-mode charge pump in 65-nm CMOS for thermoelectric energy harvester. In: IEEE Design Automation Conf., in Australia, 2012, p. 469–470. Maciel, 2018, A unified modeling approach for DC-DC converters based on the three-state switching cell, Int J Electron Comm (AEÜ), 2 Le, 2011, Design techniques for fully integrated switched capacitor dc-dc converters, IEEE J Solid-State Circuits, 46, 2120, 10.1109/JSSC.2011.2159054 Santa, 2011, Switched capacitor dc-dc converter in 65nm CMOS technology with a peak efficiency of 97%, IEEE Int Symp Circuits and Syst (ISCAS), 1351 Yi, 2018, A 0.032-mm2 0.15-V 3-Stage charge-pump scheme using a differential bootstrapped ring-VCO for energy-harvesting applications, IEEE Trans Circuits Syst, 65, 146, 10.1109/TCSII.2017.2676159 Chen, 2017, A single-chip solar energy harvesting IC using integrated photodiodes for biomedical implant applications, IEEE Trans Biomed Circuits Syst, 11, 44, 10.1109/TBCAS.2016.2553152 Kim, 2015, A 0.15V-input energy-harvesting charge pump with switching body biasing and adaptive dead-time for efficiency improvement, IEEE J. Solid-State Circ, 50, 414, 10.1109/JSSC.2014.2375824 Wang, 2016, Power efficient SRAM design with integrated bit line charge pump, Int J Electron Comm (AEÜ), 8 Cheng HC, Lin MY, Chen PH. A tri-mode fully-integrated capacitive voltage multiplier for photovoltaic energy harvesting. In: IEEE Wireless Power trans. Conf., 2017, p. 4. Kim J, Mok PKT, Kim C, Khai Y. A low-voltage high-efficiency voltage doubler for thermoelectric energy harvesting. IEEE Elec. Dev. Solid-state Circ. (EDSSC) Conf.; 2013. Intaschi L, Bruschi P, Iannaccone G. A 220-mV input, 8.6 step-up voltage conversion ratio, 10.45-μW output power, fully integrated switched-capacitor converter for energy harvesting. In: IEEE Cust. Int. Circ. Conf. (CICC); 2017. Liu, 2015, An 86% efficiency 12μW self-sustaining PV energy harvesting system with hysteresis regulation and time-domain MPPT for IoT smart nodes, IEEE J Solid-State Circuits, 50, 1424, 10.1109/JSSC.2015.2418712 Liu, 2015, A highly efficient ultralow photovoltaic power harvesting system with MPPT for internet of things smart nodes, IEEE Trans Very Large Scale Intgr (VLSI) Syst, 23, 3065, 10.1109/TVLSI.2014.2387167 Teichmann, 2012 Van Breussegem, 2013 Lee W, Wang Y, Cui T, Nazarian S, Pedram M. Dynamic thermal management for FinFET-based circuits exploiting the temperature effect inversion phenomenon. In: IEEE Low Power Elec Design (ISLPED); 2014. Shin, 2010, Energy-optimal dynamic thermal management: computation and cooling power co-optimization, IEEE Trans On Indus Inform, 6 Skoplaki, 2009, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations Elsevier, Sol Energy, 83, 614, 10.1016/j.solener.2008.10.008 Kordetoodeshki, 2018, Design of low voltage low power DC-DC converters using adiabatic technique, J Cir, Syst Comput, 27, 20 Jung, 2014, An ultra-low power fully integrated energy harvester based on self oscillating switched-capacitor voltage doubler, IEEE J Solid-State Circuits, 49, 2800, 10.1109/JSSC.2014.2346788 Kennedy, 2018, A low-EMI fully integrated switched-capacitor, IEEE Trans Electromag Compat, 60, 10.1109/TEMC.2017.2702114