Increased gene expression of interleukin-1α and interleukin-6 in rat primary glial cells induced by β-amyloid fragment

Springer Science and Business Media LLC - Tập 17 - Trang 341-350 - 2001
Veronica Cortes Toro1, Roya Tehranian1, Maria Zetterström1, Gun Eriksson1, Ulo Langel1,2, Tamas Bartfai2, Kerstin Iverfeldt1
1Department of Neurochemistry and Neurotoxicology, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
2Department of Neuropharmacology, The Scripps Research Institute, La Jolla

Tóm tắt

One of the pathological hallmarks of Alzheimer’s disease (AD) is the presence of amyloid plaques. The main constituent of the amyloid plaques is the amyloid β-peptide (Aβ) shown to activate glial cells in vitro. A growing body of evidence suggests that these cells contribute to neurotoxicity through production of inflammatory cytokines, chemokines, and neurotoxic substances, such as reactive oxygen species (ROS). In this study, mRNA levels of the inflammatory cytokines interleukin (IL)-1α and β, and IL-6 were analysed by reverse transcriptase-polymerase chain reaction (RT-PCR) in rat primary mixed glial cells after treatment with Aβ(25–35), a biologically active fragment of Aβ peptide with neurotoxic properties. Clear morphological changes of the astrocytes, as well as proliferation and clustering of microglial cells were observed by light and immunofluorescence microscopy after 24 h treatment. Significant increases in IL-1α and IL-6 mRNA levels were detected after 24 and 72 h, whereas significantly increased levels of IL-1β mRNA could only be detected after 4 h treatment. The most pronounced effect was seen on IL-6 mRNA expression, which increased approx two- to threefold after treatment. In addition, increased secretion of IL-6 was detected after 96 h exposure. Recently, association of IL-1α and IL-6 gene polymorphism with AD was reported, suggesting that these cytokines may play an important role in the development of the disease. The increased mRNA levels of IL-1α and IL-6 in parallel with the morphological changes in the mixed glial-cell cultures support that these cytokines may be involved in Aβ-induced gliosis and in the pathogenesis of AD.

Tài liệu tham khảo

Akama K. T. and Van Eldik L. J. (2000) β-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1β- and tumor necrosis factor-α (TNFα)-dependent, and involves a TNFα receptor-associated factor-α and NFκB-inducing kinase-dependent signaling mechanism. J. Biol. Chem. 275, 7918–7924. Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G. M., et al. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421. Araujo D. M. and Cotman C. W. (1992) β-Amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res. 569, 141–145. Barger S. W. and Harmon A. D. (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388, 878–881. Benzing W. C., Wujek J. R., Ward E. K., Shaffer D., Ashe K. H., Younkin S. G., and Brunden K. R. (1999) Evidence for glial-mediated inflammation in aged APPSW transgenic mice. Neurobiol. Aging 20, 581–589. Blum-Degen D., Müller T., Kuhn W., Gerlach M., Przuntek H., and Riederer P. (1995) Interleukin-1β and interluekin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 202, 17–20. Boutin H., Luheshi G., and Rothwell N. (2000) Effect of IL-1α and/or IL-1β deletion on cerebral ischaemia. Soc. Neurosci. (abstract) 26, 670.15. Buxbaum J. D., Oishi M., Cheng H. I., Pinkas-Kramarski R., Jaffe E. A., Gandy S. E., and Greengard P. (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc. Natl. Acad. Sci. USA 89, 10,075–10,078. Cacabelos R., Alvarez X. A., Fernandez-Novoa L., Franco A., Mangues R., Pellicer A., and Nishimura T. (1994) Brain interleukin-1 beta in Alzheimer’s disease and vascular dementia. Methods Find Exp. Clin. Pharmacol. 16, 141–151. Campbell I. L., Abraham C. R., Masliah E., Kemper P., Inglis J. D., Oldstone M. B., and Mucke L. (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl. Acad. Sci. USA 90, 10,061–10,065. Combs C. K., Johnson D. E., Karlo J. C., Cannady S. B., and Landreth G. E. (2000) Inflammatory mechanisms in Alzheimer’s disease: Inhibition of β-amyloidstimulated pro inflammatory responses and neurotoxicity by PPARγ agonists. J. Neurosci. 20, 558–567. Del Bo R., Angeretti N., Lucca E., De Simoni G. M., and Forloni G. (1995) Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and β-amyloid production in cultures. Neurosci. Lett. 188, 70–74. Dijkstra C. D., Dopp E. A., Joling P., and Kraal G. (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54, 589–599. Eisenbart G. S., Walsh F. S., and Nirenberg M. (1979) Monoclonal antibody to a plasma membrane antigen of neurons. Proc. Natl. Acad. Sci. USA 76, 4913–4917. Eriksson G., Peterson A., Iverfeldt K., and Walum E. (1995) Sodium-dependent glutamate uptake as an activator of oxidative metabolism in primary astrocyte cultures from new born rat. Glia 15, 152–156. Eriksson G., Zetterström M., Cortes Toro V., Bartfai T., and Iverfeldt K. (1998) Hypersensitive cytokine responses in astrocytes from IL-1 receptor type I deficient mice to β-amyloid (25–35). Int. J. Mol. Med. 1, 201–206. Ershler W. B. and Keller E. T. (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Ann. Rev. Med. 51, 245–270. Forloni G., Mangiarotti F., Angeretti N., Lucca E., and De Simone M. G. (1997) β-Amyloid fragment potentiates IL-6 and TNF-α secretion by LPS in astrocytes but not in microglia. Cytokine 9, 759–762. Frautschy S. A., Yang F., Irrizarry M., Hyman B., Saido T. C., Hsiao K., and Cole G. M. (1998) Microglial response to amyloid plaques in APPsw transgenicmice. Am. J. Pathol. 152, 307–317. Gadient R. A. and Otten U. H. (1997) Interleukin-6 (IL-6) molecule with both beneficial and destructive potentials. Prog. Neurobiol. 52, 379–390. Gatti S. and Bartfai T. (1993) Induction of tumor necrosis factor-alpha mRNA in the brain after peripheral endotoxin treatment: comparison with interleukin-1 family and interleukin-6. Brain Res. 624, 291–294. Gitter B. D., Cox L. M., Rydel R. E., and May P. C. (1995) Amyloid beta peptide potentiates cytokine secretion by interleukin-activated human astrocytoma cells. Proc. Natl. Acad. Sci. USA 92, 10,738–10,741. Goldgaber D., Harris H. W., Hla T., Maciag T., Donnelly R. J., Jacobsen J. S., et al. (1989) Interleukin I regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc. Natl. Acad. Sci. USA 86, 7606–7610. Grimaldi L. M. E., Casadei V.M., Ferri C., Vegalia F., Licastro F., Annoni G., et al. (2000) Association of early-onset Alzheimer’s disease with an interleukin 1α gene polymorphism. Ann. Neurol. 47, 371–365. Grundt I. K., Neskowic N. M., and Roussel G. (1990) Microglial cells in primary cultures exposed to triethyl lead. ATLA Latern. Lab. Anim. 17, 207–210. Hüll M., Strauss S., Volk B., Berger M., and Bauer J. (1995) Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol. (Berl.) 89, 544–551. Johnstone M., Gearing A. J. H., and Miller K. M., (1999) A central role for astrocytes in the inflammatory response to β-amyloid; chemicals, cytokines and reactive oxygen species are produced. J. Neuroimmunol. 93, 182–193. Kato H., Kogure K., Liu X. H., Araki T., and Itoyama Y. (1996) Progressive expression of immunomolecules on activated microglia and invading leukocytes following focal cerebral ischemia in the rat. Brain Res. 734, 203–212. LaFortune L., Nalbantoglu J., and Antel J. P. (1996) Expression of tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) mRNA in adult human astrocytes: comparison with adult microglia. J. Neuropathol. Exp. Neurol. 55, 515–521. Lieb K., Kaltschmidt C., Kaltschmidt B., Baeuerle P. A., Berger M., Bauer J., and Fiebich B. L. (1996) Interleukin-1β uses common and distinct signaling pathways for induction of the interlukin-6 and tumor necrosis factor α genes in the human astrocytoma cell line U373. J. Neurochem. 66, 1496–1503. Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vunerable to excitotoxicity. J. Neurosci. 12, 376–389. McDonald D. R., Brunden K. R., and Landreth G. E. (1997) Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J. Neurosci. 17, 2284–2294. Meda L., Cassatella M. A., Szendrei G. I., Otvos Jr. L., Baron P., Villalba M., et al. (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650. Meda L., Baron P., Prat E., Scarpini E., Scarlato G., Cassatella M. A., and Rossi F. (1999) Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with β-amyloid (25–35). J. Neuroimmunol. 93, 45–52. Miller R. H., Abney E. R., David S., French-Constant C., Lindsay R., Patel R., et al. (1986) Is reactive gliosis a property of a distinct subpopulation of astrocytes? Neuroscience 6, 22–29. Murphy G. M. Jr., Yang L., and Cordell B. (1998) Macrophage colony-stimulating factor augments β-amyloid-induced interleukin-1, interleukin-6, and nitrite oxide production by microglial cells. J. Biol. Chem. 273, 20,969–20,971. Nicoll J. A. R., Mrak R. E., Graham D. I., Stewart J., Wilcock G., MacGowan S., et al. (2000) Association of Interleukin-1 gene polymorphism with Alzheimer’s disease. Ann. Neurol. 47, 365–368. O’Barr S. and Cooper N. R. (2000) The C5a complement activation peptide increases IL-1beta and IL-6 amyloidbeta primed human monocytes: implications for Alzheimer. J. Neuroimmunol. 109, 87–94. Papassotiropoulos A., Bagli M., Jessen F., Bayer T. A., Maier W., Rao M. L., and Henn R. (1999) A genetic variation of the inflammatory cytokine Interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer’s disease. Ann. Neurol. 45, 666–668. Pike C. J., Walencewicz-Wasserman A. J., Kosmoski J., Cribbs D. H., Glabe G., and Cotman C. W. (1995) Structure-activity analyses of β-amyloid peptides: contribution of the β25–35 region to aggregation and neurotoxicity. J. Neurochem. 64, 253–265. Ringheim G. E., Szczepanik A. M., Petko W., Burher K. L., Zhu S. Z., and Chao C. C. (1998) Enhancement of beta-amyloid precursor protein transcription and expression by the soluble IL-6 receptor/IL-6 complex. Mol. Brain Res. 55, 35–44. Rogers J., Kirby L. C., Hempelman S. R., Berry D. L., McGeer P. L., Kaszniak A. W., et al. (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43, 1609–1611. Sheng J. C., Mrak R. E., and Griffin W. S. T. (1995) Microglial interleukin-1α expression in brain regions in Alzheimer’s disease: correlation with neuritic plaque distribution. Neuropathol. Appl. Neurobiol. 21, 290–301. Terzi E., Holzemann G., and Seelig J. (1994) Reversible random coil—sheet transition of the Alzheimer’s β-amyloid fragment (25–35). Biochemistry 33, 1345–1350. Tehranian R., Hasanvan H., Iverfeldt K., Post C., and Schultzberg M. (2001) Early induction of interleukin-6 mRNA in the hippocampus and cortex of APPSW transgenic mice Tg2576. Neurosci. Lett. 301, 54–58. Van Wagoner N. J., Oh J.-W., Repovic P., and Benveniste E. N. (1999) Interleukin-6 (IL-6) production by astrocytes: Autocrine regulation by IL-6 and the soluble IL-6 receptor. Neuroscience 19(13), 5236–5244. Vandenabeele P. and Fiers W. (1991) Is amyloidogenesis during Alzheimer’s disease due to an IL-1/IL-6 mediated ‘acute phase’ response in the brain. Immunol. Today 12, 217–219. Yankner B. A., Duffy L. K., and Kirschner D. A. (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250, 279–282.