Dynamic performance of a nonlinear non-dimensional two stage electrohydraulic servovalve model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akers, A., Lin, S.J.: A Dynamic model of the flapper-nozzle component of an electrohydraulic servovalve. ASME Trans. J. Dyn. Sys. Meas. Control 3, 105–109 (1989)
Akers, A., Lin, S.J.: Dynamic analysis of flapper-nozzle valve. ASME Trans. J. Dyn. Sys. Meas. Control 113, 163–167 (1991)
Anderson, T.O.: Fluid power systems—modeling and analysis. Institute of Energy Technology, Aalborg University, 2nd ed. (2003)
Anderson, R.T., Lipy, : Mathematical modeling of a two spool flow control servovalve using a pressure control pilot. ASME Trans. J. Dyn. Sys. Meas. Control 124, 420–427 (2002)
Andres, L.A., Vance, J.M.: Effect of fluid inertia on finite-length squeeze film dampers. ASLE Trans. 30(30), 384–393 (1986)
Bang, Y.-B.: Two-stage electrohydraulic servovalve using stack-type piezoelectric elements. Proc. Inst. Mech. Eng. C 218(1), 53–65 (2005)
Burrows, C.R., Mu, C., Darling, J.: A Dynamic analysis of a nozzle-flapper valve with integral squeeze film damper. Trans. ASME J. Dyn. Syst. Meas. Control 113, 702–708 (1991)
El-Araby, M., El-Kafrawy, Fahmy, A.: Non-dimensional mathematical model of a two stage electrohydraulic servovalve. Port Said Eng. Res. J. Suez Canal Univ. Egypt 10(1), 225–234 (2006a)
El-Araby, M., El-Kafrawy, Fahmy, A.: Static characteristics of a two stage electrohydraulic servovalve. Port Said Eng. Res. J. Suez Canal Univ. Egypt 10(2), 158–168 (2006b)
Han, Y., Rogersb, R.J.: Nonlinear fluid forces in cylindrical squeeze films. Part II: finite length. J. Fluids Struct. 15, 171–206 (2001)
Han, Y., Rogersb, R.J.: Nonlinear fluid forces in cylindrical squeeze films. Part I: short and long lengths. J. Fluids Struct. 15, 151–169 (2002)
He, Y.B., Chua, P.S.K., Lim, G.H.: Performance analysis of a two-stage electrohydraulic servovalve in centrifugal force field. J. Fluids Eng. 125, 166–170 (2003)
Hiremath, S.S., Singaperumal, M.: Investigations on actuator dynamics through theoretical and finite element approach. Math. Probl. Eng. 2010, 22. Article ID 191898 (2010). doi: 10.1155/2010/191898
Kuo, B.C., Golnaraghi, F.: Automatic Control Systems, 9th edn. Willey, New York (2010)
Liuping, W.: Modern Control Systems Analysis and Design Using Matlab and Simulink. Springr-Verlag, London (2009)
Manring, N.D.: Hydraulic Control System. ISBN:978-0-471-69311-6, Willey, New York (2005)
Martin, D.J., Burrows, C.R.: The dynamic characteristics of an electrohydraulic Servovalve. ASME Trans. J. Dyn. Syst. Meas. Control 89, 395–406 (1976)
Maskery, R.A., Thayer, W.J.: A brief history of electrohydraulic servomechanisms. ASME Trans. J. Dyn. Syst. Meas. Control 100, 110–116 (1978)
Math Works: Getting Started with Simulink for DSP, 2nd edn. http://www.mathworks.com (2002)
McCloy, D., Martin, H.R.: Some effects of cavitation and flow forces in electrohydraulic servomechanisms. Proc. Inst. Mech. Eng. 178(2), 539 (1963–1964)
Ogata, K.: Modern Control Engineering, 4th edn. Pearson Education, Delhi (2002)
Tasi, S.T., Akers, A., Lin, S.J.: Modeling and dynamic evaluation of a two-stage two-spool servovalve used for pressure control. ASME Trans. J. Dyn. Syst. Meas. Control 113, 709–713 (1991)
Thaler, G.J.: Automatic Control Systems. Jaico Publishing House, Mumbai (2005)
Tichy, J.A.: A Study of the effect of fluid inertia and leakage in the finite squeeze film damper. ASME Trans. J. Tribol. 109, 54–59 (1987)
Wang, T. et al.: Modeling of a nozzle-flapper type pneumatic servo valve including the influence of flow force. TuTech 33, 33–43 (2005)