TiO2-based building materials: Above and beyond traditional applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Ch, 2004, 32(1–2): 33–177
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38
Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Phys Chem, 1977, 81: 1484–1488
Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 1985, 29: 211–214
Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature, 1997, 388: 431–432
Poon C S, Cheung E. NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr Build Mater, 2007, 21(8): 1746–1753
Jun T S, Kang G M, Wi S Y. Paint composition for antibiosis and VOCs removal. KR Patent, KR2001100052-A, 2001-11-14
Shang G, Zhou J, Zhao F, et al. Sunlight controlled self cleaning glass and its producing method. CN Patent, CN1944310-A, 2007-4-11
Wang H, Wang J, Yang F. Antifogging self-cleaning glass and preparation method. CN Patent, CN1872758-A, 2006-12-06
Lackhoff M, Prieto X, Nestle N, et al. Photocatalytic activity of semiconductor—modified cement-influence of semiconductor type and cement ageing. Appl Catal B, 2003, 43(3): 205–216
Berto A M. Ceramic tiles: Above and beyond traditional applications. J Eur Ceram Soc, 2007, 27(2-3): 1607–1613
Lee J H. Environmental construction materials fixing titanium dioxide decomposing nitrogen oxide (NOx). KR Patent, KR2002058946-A, 2002-6-12
Qian K, Zhang Y P, Little J C, et al. Dimensionless correlations to predict VOC emissions from dry building materials. Atmos Environ, 2007, 41(2): 352–359
Zabiegala B. Organic compounds in indoor environments. Pol J Environ Stud, 2006, 15(3): 383–393
Wu Z B, Gu Z L, Zhao W R, et al. Photocatalytic oxidation of gaseous benzene over nanosized TiO2 prepared by solvothermal method. Chin Sci Bull, 2007, 55(22): 3601–3067
Dechakiatkrai C, Chen J, Lynam C, et al. Photocatalytic oxidation of methanol using titanium dioxide/single-walled carbon nanotube composite. J Electrochem Soc, 2007, 154(5): 407–411
Hung W C, Fu S H, Tseng J J, et al. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol-gel method. Chemosphere, 2007, 66(11): 2142–2151
Alberici R M, Canela M C, Eberlin M N, et al. Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV-VIS. Appl Catal B, 2001, 30(3–4): 389–397
Portela R, Sanchez B, Coronado J M. Photocatalytic oxidation of H2S on TiO2 and TiO2-ZrO2 thin films. J Adv Oxid Tech, 2007, 10(2): 375–380
Dong Y C, Bai Z P, Liu R H, et al. Decomposition of indoor ammonia with TiO2-loaded cotton woven fabrics prepared by different textile finishing methods. Atmos Environ, 2007, 41(15): 3182–3192
Wang H Q, Wu Z B, Zhao W R, et al. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric. Chemosphere, 2007, 66(1): 185–190
Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment. Chem Rev, 1993, 93(2): 671–698
Ao C H, Lee S C. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl Catal B, 2003, 44(3): 191–205
Zhang Y P, Yang R, Zhao R Y. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmos Environ, 2003, 37(24): 3395–3399
Yang R, Zhang Y P, Zhao R Y. An improved model for analyzing the performance of photocatalytic oxidation reactors in removing volatile organic compounds and its application. J Air Waste Manage, 2004, 54(12): 1516–1524
Cassar L. Photocatalysis of cementitious materials: Clean buildings and clean air. Mrs Bull, 2004, 29(5): 328–331
Sopyan I, Murasawa S, Hashimoto K, et al. Highly efficient TiO2 film photocatalyst-degradation of gaseous acetaldehyde. Chem Lett, 1994 (4): 723–726
Mellott N P, Durucan C, Pantano C G, et al. Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: Photocatalytic performance and chemical durability. Thin Solid Films, 2006, 502(1–2): 112–120
Liu C X, Nakano K, Obuchi E, et al. Photocatalytic decomposition of formaldehyde using titania coated lime tile. J Adv Oxid Tech, 2007, 10(1): 11–16
Salthammer T, Fuhrmann F. Photocatalytic surface reactions on indoor wall paint. Environ Sci Technol, 2007, 41(18): 6573–6578
Taoda H, Fukaya M, Watanabe E, et al. VOC decomposition by photocatalytic wall paper. Mater Sci Forum, 2006, 510–511: 22–25
Dos S V, Kondo M M. TiO2 immobilization onto concrete: chloroform and phenol photodegradation. Quim Nova, 2006, 29(2): 251–255
Maggos T, Bartzis J G, Liakou M, et al. Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J Hazard Mater, 2007, 146: 668–673
Cassar L, Pepe C. Hydraulic binder and cement compositions containing photocatalyst particles. US Patent, US6409821B1, 2002-6-25
Maggos T, Bartzis J G, Leva P, et al. Application of photocatalytic technology for NOx removal. Appl Phys A-Mater, 2007, 89(1): 81–84
Rachel A, Subrahmanyam M, Boule P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl Phys A-Mater, 2002, 37(4): 301–308
Seo J W, Chung H, Kim M Y, et al. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small, 2007, 3(5): 850–853
Fujishima A, Hashimoto K, Watanabe T. TiO2 Photocatalysis: Fundamentals and Applications, BKC, Tokyo, 1999
Thiel J, Pakstis L, Buzby S, et al. Antibacterial properties of silver-doped titania. Small, 2007, 3(5): 799–803
Sunada K, Watanabe T, Hashimoto K. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ Sci Technol, 2003, 37(20): 4785–4789
Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film. J Photoch Photobio A, 2003, 156(1–3): 227–233
Wang R, Hashimoto K, Fujishima A, et al. Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater, 1998, 10(2): 135–138
Fujishima A, Zhang X T. Titanium dioxide photocatalysis: Present situation and future approaches. Cr Chim, 2006, 9(5–6): 750–760
Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J Photoch Photobio C, 2000, 1(1): 1–21
Paz Y, Luo Z, Rabenberg L, et al. Photooxidative self-cleaning transparent titanium dioxide films on glass. J Mater Res, 1995, 10: 2842–2848
Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: A historical overview and future prospects. Jpn J Appl Phys, 2005, 44(12): 8269–8285
Zhang Y P, Yang R, Xu Q J, et al. Characteristics of photocatalytic oxidation of toluene, benzene, and their mixture. J Air Waste Manage, 2007, 57(1): 94–101
Ao C H, Lee S C, Mak C L, et al. Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: Promotion versus inhibition effect of NO. Appl Catal B, 2003, 42(2): 119–129
Ao C H, Lee S C, Yu J Z, et al. Photodegradation of formaldehyde by photocatalyst TiO2: Effects on the presences of NO, SO2 and VOCs. Appl Catal B, 2004, 54(1): 41–50
Ao C H, Lee S C, Yu J C. Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. J Photoch Photobio A, 2003, 156(1–3): 171–177
Einaga H, Futamura S, Ibusuki T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: Comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl Catal B, 2002, 38(3): 215–225
Kim S B, Hwang H T, Hong S C. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere, 2002, 48(4): 437–444
Ameen M M, Raupp G B. Reversible catalyst deactivation in the photocatalytic oxidation of diluteo-xylene in air. J Catal, 1999, 184(1): 112–122
Ollis D F, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants. Environ Sci Technol, 1991, 25(9): 1522–1529
Sun R D, Nakajima A, Watanabe T, et al. Decomposition of gas-phase octamethyltrisiloxane on TiO2 thin film photocatalysts: catalytic activity, deactivation, and regeneration. J Photoch Photobio A, 2003, 154(2–3): 203–209
Piera E, Ayllon J A, Domenech X, et al. TiO2 deactivation during gas-phase photocatalytic oxidation of ethanol. Catal Today, 2002, 76(2–4): 259–270
Kozlov D V, Vorontsov A V, Smirniotis P G, et al. Gas-phase photocatalytic oxidation of diethyl sulfide over TiO2: Kinetic investigations and catalyst deactivation. Appl Catal B, 2003, 42(1): 77–87
Wang W, Chiang L W, Ku Y. Decomposition of benzene in air streams by UV/TiO2 process. J Hazard Mater, 2003, 101(2): 133–146
Wu Z B, Dong F, Zhao W R, et al. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride. J Hazard Mater, 2008, 157: 57–63
Batzill M, Morales E H, Diebold U, et al. Surface studies of nitrogen implanted TiO2. Chem Phys, 2007, 339(1–3): 36–43
Miyauchi, M. Visible light induced super-hydrophilicity on single crystalline TiO2 nanoparticles and WO3 layered thin films. J Mater Chem, 2008, 18(16): 1858–1864
Page K, Palgrave R G, Parkin I P, et al. Titania and silver-titania composite films on glass-potent antimicrobial coatings. J Mater Chem, 2007, 17(1): 95–104
Huijser A, Marek P L, Savenije T J, et al. Photosensitization of TiO2 and SnO2 by artificial self-assembling mimics of the natural chlorosomal bacteriochlorophylls. J Phys Chem C, 2007, 111(31): 11726–11733
Dong F, Zhao W R, Wu Z B. Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect. Nanotechnology, 2008, 19(36): 365607
Kyrkou A, Kontos A I, Papavassiliou G, et al. Highly photoactive monodidisperse titania hollow nanospheres. J Adv Oxid Tech, 2008, 11(2): 402–410