A geostatistical model for combined analysis of point-level and area-level data using INLA and SPDE
Tài liệu tham khảo
Banerjee, 2014
Berrocal, 2010, A spatio-temporal downscaler for outputs from numerical models, J. Agric. Biol. Environ. Stat., 15, 176, 10.1007/s13253-009-0004-z
Cameletti, 2013, AStA Adv. Stat. Anal.
Cowles, M.K., Yan, J., Smith, B., 2007. Reparameterized and marginalized posterior and predictive sampling for complex Bayesian geostatistical models, Tech. rep., The University of Iowa, Department of Statistics and Actuarial Science, URL http://www.stat.uiowa.edu/techrep/.
Cressie, 1993
Fuentes, 2005, Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models, Biometrics, 66, 36, 10.1111/j.0006-341X.2005.030821.x
Gotway, 2002, Combining incompatible spatial data, J. Amer. Statist. Assoc., 97, 632, 10.1198/016214502760047140
Guttorp, 2006, Studies in the history of probability and statistics xlix on the matérn correlation family, Biometrika, 93, 989, 10.1093/biomet/93.4.989
Jackson, 2008, Hierarchical related regression for combining aggregate and individual data in studies of socio-economic disease risk factors, J. R. Stat. Soc. Ser. A Stat. Soc., 171, 159, 10.1111/j.1467-985X.2007.00500.x
Lawson, 2012, Bayesian point event modeling in spatial and environmental epidemiology, Stat. Methods Med. Res., 21, 509, 10.1177/0962280212446328
Lindgren, 2011, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 73, 423, 10.1111/j.1467-9868.2011.00777.x
Robinson, 1950, Ecological correlations and the behavior of individuals, Amer. Sociol. Rev., 15, 351, 10.2307/2087176
Rue, 2007, Approximate Bayesian inference for hierarchical Gaussian Markov random fields models, J. Statist. Plann. Inference, 137, 3177, 10.1016/j.jspi.2006.07.016
Rue, 2009, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, J. R. Stat. Soc. Ser. B Stat. Methodol., 71, 319, 10.1111/j.1467-9868.2008.00700.x
Rue, H., Martino, S., Lindgren, F., Simpson, D., Riebler, A., 2013. R-inla: Approximate Bayesian inference using integrated nested Laplace approximations, http://www.r-inla.org/.
Smith, 2008, Unified geostatistical modeling for data fusion and spatial heteroskedasticity with R package ramps, J. Stat. Softw., 25, 1, 10.18637/jss.v025.i10
Taylor, 2014, INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes, J. Stat. Comput. Simul., 84, 2266, 10.1080/00949655.2013.788653
United States Environmental Protection Agency (EPA), 2015a. Air Quality Data Mart, https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html.
United States Environmental Protection Agency (EPA), 2015b. Particulate Matter (PM) Pollution, https://epa.gov/pm-pollution.
van Donkelaar, A., Martin, R.V., Brauer, M., Boys, B.L., 2015a. Global annual PM2.5 grids from modis, misr and seawifs Aerosol Optical Depth (AOD), 1998–2012. Palisades, NY: Nasa Socioeconomic Data and Applications Center, SEDAC, http://dx.doi.org/10.7927/H4028PFS.
van Donkelaar, 2015, Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter, Environ. Health Perspect., 123, 135, 10.1289/ehp.1408646
Wikle, 2005, Combining information across spatial scales, Technometrics, 47, 80, 10.1198/004017004000000572