A geostatistical model for combined analysis of point-level and area-level data using INLA and SPDE

Spatial Statistics - Tập 21 - Trang 27-41 - 2017
Paula Moraga1, Susanna M. Cramb1,2, Kerrie L. Mengersen1,3, Marcello Pagano4
1ARC Centre of Excellence for Mathematical & Statistical Frontiers, Queensland University of Technology (QUT), Brisbane, Australia
2Cancer Council Queensland, Brisbane, Australia
3Cooperative Research Centre for Spatial Information, Australia
4Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States

Tài liệu tham khảo

Banerjee, 2014 Berrocal, 2010, A spatio-temporal downscaler for outputs from numerical models, J. Agric. Biol. Environ. Stat., 15, 176, 10.1007/s13253-009-0004-z Cameletti, 2013, AStA Adv. Stat. Anal. Cowles, M.K., Yan, J., Smith, B., 2007. Reparameterized and marginalized posterior and predictive sampling for complex Bayesian geostatistical models, Tech. rep., The University of Iowa, Department of Statistics and Actuarial Science, URL http://www.stat.uiowa.edu/techrep/. Cressie, 1993 Fuentes, 2005, Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models, Biometrics, 66, 36, 10.1111/j.0006-341X.2005.030821.x Gotway, 2002, Combining incompatible spatial data, J. Amer. Statist. Assoc., 97, 632, 10.1198/016214502760047140 Guttorp, 2006, Studies in the history of probability and statistics xlix on the matérn correlation family, Biometrika, 93, 989, 10.1093/biomet/93.4.989 Jackson, 2008, Hierarchical related regression for combining aggregate and individual data in studies of socio-economic disease risk factors, J. R. Stat. Soc. Ser. A Stat. Soc., 171, 159, 10.1111/j.1467-985X.2007.00500.x Lawson, 2012, Bayesian point event modeling in spatial and environmental epidemiology, Stat. Methods Med. Res., 21, 509, 10.1177/0962280212446328 Lindgren, 2011, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 73, 423, 10.1111/j.1467-9868.2011.00777.x Robinson, 1950, Ecological correlations and the behavior of individuals, Amer. Sociol. Rev., 15, 351, 10.2307/2087176 Rue, 2007, Approximate Bayesian inference for hierarchical Gaussian Markov random fields models, J. Statist. Plann. Inference, 137, 3177, 10.1016/j.jspi.2006.07.016 Rue, 2009, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, J. R. Stat. Soc. Ser. B Stat. Methodol., 71, 319, 10.1111/j.1467-9868.2008.00700.x Rue, H., Martino, S., Lindgren, F., Simpson, D., Riebler, A., 2013. R-inla: Approximate Bayesian inference using integrated nested Laplace approximations, http://www.r-inla.org/. Smith, 2008, Unified geostatistical modeling for data fusion and spatial heteroskedasticity with R package ramps, J. Stat. Softw., 25, 1, 10.18637/jss.v025.i10 Taylor, 2014, INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes, J. Stat. Comput. Simul., 84, 2266, 10.1080/00949655.2013.788653 United States Environmental Protection Agency (EPA), 2015a. Air Quality Data Mart, https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html. United States Environmental Protection Agency (EPA), 2015b. Particulate Matter (PM) Pollution, https://epa.gov/pm-pollution. van Donkelaar, A., Martin, R.V., Brauer, M., Boys, B.L., 2015a. Global annual PM2.5 grids from modis, misr and seawifs Aerosol Optical Depth (AOD), 1998–2012. Palisades, NY: Nasa Socioeconomic Data and Applications Center, SEDAC, http://dx.doi.org/10.7927/H4028PFS. van Donkelaar, 2015, Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter, Environ. Health Perspect., 123, 135, 10.1289/ehp.1408646 Wikle, 2005, Combining information across spatial scales, Technometrics, 47, 80, 10.1198/004017004000000572