PyLabRobot: An open-source, hardware-agnostic interface for liquid-handling robots and accessories
Tài liệu tham khảo
Coston, 2020, Automated hiPSC culture and sample preparation for 3D live cell microscopy, bioRxiv
Brandenberg, 2020, High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays, Nat. Biomed. Eng., 4, 863, 10.1038/s41551-020-0565-2
Eggert, 2021, An open-source technology platform to increase reproducibility and enable high-throughput production of tailorable gelatin methacryloyl (GelMA) - based hydrogels, Mater. Des., 204, 10.1016/j.matdes.2021.109619
DeBenedictis, 2022, Systematic molecular evolution enables robust biomolecule discovery, Nat. Methods, 19, 55, 10.1038/s41592-021-01348-4
Chory, 2023, High-throughput approaches to uncover synergistic drug combinations in leukemia, SLAS Discov., 28, 193, 10.1016/j.slasd.2023.04.004
Billeci, 2016, Implementation of an Automated High-Throughput Plasmid DNA Production Pipeline, J. Lab. Autom., 21, 765, 10.1177/2211068216630547
Ortiz, 2017, Automated Robotic Liquid Handling Assembly of Modular DNA Devices, J. Vis. Exp., e54703
Walsh, 2019, Standardizing Automated DNA Assembly: Best Practices, Metrics, and Protocols Using Robots, SLAS Technol., 24, 282, 10.1177/2472630318825335
GitHub Copilot. https://copilot.github.com/.
Higgins, 2020, Chemical Robotics Enabled Exploration of Stability in Multicomponent Lead Halide Perovskites via Machine Learning, ACS Energy Lett., 5, 3426, 10.1021/acsenergylett.0c01749
Ahmadi, 2021, Machine learning for high-throughput experimental exploration of metal halide perovskites, Joule, 5, 2797, 10.1016/j.joule.2021.10.001
Higgins, 2021, High-Throughput Study of Antisolvents on the Stability of Multicomponent Metal Halide Perovskites through Robotics-Based Synthesis and Machine Learning Approaches, J. Am. Chem. Soc., 143, 19945, 10.1021/jacs.1c10045
Tamasi, 2022, Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids, Adv. Mater., 34
Chory, 2021, Enabling high-throughput biology with flexible open-source automation, Mol. Syst. Biol., 17, 10.15252/msb.20209942
Bär, 2012, SiLA: Basic standards for rapid integration in laboratory automation, J. Lab. Autom., 17, 86, 10.1177/2211068211424550
Bryce
Emerald Cloud Lab: Remote Controlled Life Sciences Lab https://www.emeraldcloudlab.com/.
Vasilev
Chory, 2020, Flexible open-source automation for robotic bioengineering, bioRxiv
Krekel
Harris, 2020, Array programming with NumPy, Nature, 585, 357, 10.1038/s41586-020-2649-2
Loizides, 2016
Paszke, 2019, Pytorch: An imperative style, high-performance deep learning library, Adv. Neural Inf. Process. Syst., 32
Perez, 2007, IPython: A System for Interactive Scientific Computing, Comput. Sci. Eng., 9, 21, 10.1109/MCSE.2007.53
Gardner, 1970, The fantastic combinations of John conway’s new solitaire game 'life, Sci. Am., 223, 20
Boiko, 2023, Emergent autonomous scientific research capabilities of large language models, arXiv
Pérez, 2011, Python: An Ecosystem for Scientific Computing, Comput. Sci. Eng., 13, 13, 10.1109/MCSE.2010.119
Faiña, 2020, EvoBot: An Open-Source, Modular, Liquid Handling Robot for Scientific Experiments, Appl. Sci., 10, 814, 10.3390/app10030814
Mypy Contributors. Mypy. https://github.com/python/mypy.
Pylint Contributors. Pylint. https://github.com/pylint-dev/pylint.
Sphinx contributors: The Sphinx documentation generator. https://github.com/sphinx-doc/sphinx.
MyST-NB Contributors. MyST-NB. https://github.com/executablebooks/MyST-NB.
Melnikov, A., and Fette, I. The Websocket Protocol. RFC 6455.
PyUSB Contributors. PyUSB. https://github.com/pyusb/pyusb.
Pylibftdi Contributors. Pylibftdi. https://github.com/codedstructure/pylibftdi.