Complex formation of acridine orange with single-stranded polyriboadenylic acid and 5′-AMP: Cooperative binding and intercalation between bases

European Biophysics Journal - Tập 5 - Trang 75-90 - 1979
V. von Tscharner1, G. Schwarz1
1Department of Biophysical Chemistry, Biocenter of the University of Basel, Basel Switzerland

Tóm tắt

The binding of acridine orange to single-stranded polyribonucleic acid at low polymer to dye ratios exhibits cooperative behavior of the kind observed with other simple polyanions. It is thus attributed to electrostatic interaction between polymer and stacked dye molecules. At higher polymer to dye ratios, however, distinct deviations from the predictions of the basic theory occur. These are interpreted by additional non-cooperative binding of acridine orange to the bases of the polymer subunits owing to dye-base stacking. This effect is studied also with 5′-AMP monomers where it likewise leads to complex formation. Both systems are investigated experimentally by means of the changes produced in the dye spectrum. Based on quantitative analyses the equilibrium constants of both systems are evaluated and discussed. They indicate a sandwich-type of intercalation of dye between two bases of the single-stranded polymer.

Tài liệu tham khảo

Armstrong, R. W., Kurucsev, T., Strauss, U. P.: The interaction between acridine orange dyes and deoxyribonucleic acid. J. Am. Chem. Soc. 92, 3174–3181 (1970) Blake, R. D., Fresco, J. R.: Polynucleotides XI. Thermodynamics of (A)N · 2 (U)∞ from the dependence of T m on oligomer length. Biopolymers 12, 775–789 (1973) Bloomfield, V. A., Crothers, D. M., Tinoco, I.: Physical chemistry of nucleic acids. New York, N.Y.: Harper and Row 1974 Dourlent, M., Hélène, C.: A quantitative analysis of proflavine binding to polyadenylic acid, polyuridylic acid, and transfer RNA. Eur. J. Biochem. 23, 86–95 (1971) Eggimann, R.: Kooperative Komplexbildung von organischen Farbstoffen. Ph. D. Thesis, University of Basel (1974) Evans, F. E., Sarma, R. H.: Intermolecular orientations of adenosine-5′-monophosphate in aqueous solution as studied by fast Fourier transform 1H NMR spectroscopy. Biopolymers 13, 2117–3132 (1974) Halm, T. E., Ciak, J.: Progress in molecular and subcellular biology. Han, F. E. (ed.), vol. 2, pp. 329. Berlin, Heidelberg, New York: Springer 1971 Imae, T., Ikeda, S.: Circular dichroism and structure of the complex of acridine orange with polyglutamic acid. Biopolymers 15, 1655–1667 (1976) Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Physik 31, 253–258 (1925) Kurucsev, T., Strauss, U. P.: Derivation and interpretation of the spectrum of the dimer of acridine orange hydrochloride, dilute aqueous solutions, and oriented film studies. J. Phys. Chem. 74, 3081–3085 (1970) Lamm, E., Neville, M.: The dimer spectrum of acridine orange hydrochloride. J. Phys. Chem. 69, 3872–3877 (1965) Lehninger, A. L.: Biochemistry. New York, N.Y.: Worth Publishing Inc. 1970 Lerman, L. S.: The structure of DNA-acridine complex. Proc. Natl. Acad. Sci. USA 49, 94–102 (1963) Menter, J. M., Hurst, R., West, S. S.: II. Binding constant and cooperativity parameters of acridine orange-dermatan sulfate system. Biopolymers 16, 695–702 (1977) Moroshkina, E. B., Shishov, A. K., Kirivtsova, M. A., Zhadin, N. N., Frisman, E. V.: Investigation of the influence of acridine dyes on the molecular structure of DNA. Mol. Biol. 9, 668–674 (1976) Pritchard, N. J., Blake, A., Peacocke, A. R.: Modified intercalation model for the interaction of amino acridines and DNA. Nature 212, 1360–1361 (1966) Robinson, B. H., Löffler, A., Schwarz, G.: Thermodynamic behaviour of acridine orange in solution. J. Chem. Soc. Faraday Trans I 69, 56–69 (1973) Schreiber, J. P., Daune, M. P.: Fluorescence of complexes of acridine dye with synthetic polydeoxyribonucleotides: A physical model of frameshift mutation. J. Mol. Biol. 83, 487–501 (1974) Schwarz, G.: Cooperative binding to linear biopolymers. 1. Fundamental static and dynamic properties. Eur. J. Biochem. 12, 442–453 (1970) Schwarz, G., Balthasar, W.: Cooperative binding to linear biopolymers. 3. Thermodynamic and kinetic analysis of the acridine orange-poly(L-glutamic acid)system. Eur. J. Biochem. 12, 461–467 (1979) Singer, M. F., Heppel, L. A., Ruskinzky, G. W., Sorber, H. A.: Spectral properties of adenine oligoribonucleotides. Biochim. Biophys. Acta 61, 474–477 (1962) Söderström, K. O., Parvinen, L. M., Parvinen, M.: Early detection of cell damage by supravital acridine orange staining. Experientia 33, 265–266 (1977) Taraganos, F., Darzynkiewicz, Z., Sharpless, T., Melamed, M. R.: Simultaneous staining of ribonucleic and deoxyribonucleic acids in unfixed cells using acridine orange in a flow cytofluorometric system. J. Histochem. Cytochem. 25, 46–56 (1977) Tomson, S. H.: Tumor destruction due to acridine orange photoactivation by argon laser. Ann. N.Y. Acad. Sci. 267, 191–198 (1976) West, S. S., Hurst, R. E., Menter, J. M.: Thermodynamics of mucopolysaccharide-dye binding. I. Identification of free and bound dye via membrane filtration: acridine orange-dermatan sulfate system. Biopolymers 16, 685–693 (1977) Zanker, V.: über den Nachweis definierter reversibler Assoziate („reversible Polymerisate“) des Acridinorange durch Absorptions- und Fluoreszenzmessungen in wÄ\riger Lösung. Z. Physik. Chem. 199, 225–258 (1952)