Glucosinolate metabolism and its control
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bussy, 1840, Sur la formation de l'huile essentielle de moutarde, J. Pharmacol., 27, 464
Kliebenstein, 2005, The glucosinolate-myrosinase system in an ecological and evolutionary context, Curr. Opin. Plant Biol., 8, 264, 10.1016/j.pbi.2005.03.002
Woodward, 2005, Auxin: regulation, action, and interaction, Ann. Bot. (Lond.), 95, 707, 10.1093/aob/mci083
Mithen, 2000, The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods, J. Sci. Food Agric., 80, 967, 10.1002/(SICI)1097-0010(20000515)80:7<967::AID-JSFA597>3.0.CO;2-V
Talalay, 2001, Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism, J. Nutr., 131, 3027S, 10.1093/jn/131.11.3027S
Keum, 2004, Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms, Mutat. Res., 555, 191, 10.1016/j.mrfmmm.2004.05.024
Fahey, 2001, The chemical diversity and distribution of glucosinolates and isothiocyanates among plants, Phytochemistry, 56, 5, 10.1016/S0031-9422(00)00316-2
Wittstock, 2002, Glucosinolate research in the Arabidopsis era, Trends Plant Sci., 7, 263, 10.1016/S1360-1385(02)02273-2
Kelly, 1998, Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea, Planta, 206, 370, 10.1007/s004250050412
Andreasson, 2001, Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus, Plant Physiol., 127, 1750, 10.1104/pp.010334
Husebye, 2002, Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis, Plant Physiol., 128, 1180, 10.1104/pp.010925
Lüthy, 1984, The mustard oil bomb: rectified analysis of the subcellular organization of the myrosinase system, Biochem. Physiol. Pflanz., 179, 5, 10.1016/S0015-3796(84)80059-1
Ratzka, 2002, Disarming the mustard oil bomb, Proc. Natl. Acad. Sci. U. S. A., 99, 11223, 10.1073/pnas.172112899
Brader, 2001, Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora, Plant Physiol., 126, 849, 10.1104/pp.126.2.849
Tierens, 2001, Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens, Plant Physiol., 125, 1688, 10.1104/pp.125.4.1688
Lambrix, 2001, The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory, Plant Cell, 13, 2793, 10.1105/tpc.13.12.2793
Kliebenstein, 2002, Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana, Genetics, 161, 325, 10.1093/genetics/161.1.325
Agrawal, 2003, A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae, J. Chem. Ecol., 29, 1403, 10.1023/A:1024265420375
Wittstock, 2004, Successful herbivore attack due to metabolic diversion of a plant chemical defense, Proc. Natl. Acad. Sci. U. S. A., 101, 4859, 10.1073/pnas.0308007101
Mikkelsen, 2002, Biosynthesis and metabolic engineering of glucosinolates, Amino Acids, 22, 279, 10.1007/s007260200014
Underhill, 1980, Glucosinolates, 493
Poulton, J.E. and Møller, B.L. (1993) Glucosinolates. In Methods in Plant Biochemistry (Vol 9) (Lea, P.J., ed.), pp. 209–237, Academic Press
Glawischnig, 2004, Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 101, 8245, 10.1073/pnas.0305876101
Hansen, 2005, New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana, Planta, 221, 603, 10.1007/s00425-005-1553-1
Petersen, 2001, Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate, Planta, 212, 612, 10.1007/s004250000429
Hansen, 2001, CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis, J. Biol. Chem., 276, 24790, 10.1074/jbc.M102637200
Bak, 2001, The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis, Plant Physiol., 127, 108, 10.1104/pp.127.1.108
Bak, 2001, CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis, Plant Cell, 13, 101, 10.1105/tpc.13.1.101
Mikkelsen, 2004, Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis, Plant J., 37, 770, 10.1111/j.1365-313X.2004.02002.x
Naur, 2003, CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis, Plant Physiol., 133, 63, 10.1104/pp.102.019240
Hemm, 2003, The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes, Plant Cell, 15, 179, 10.1105/tpc.006544
Bowles, 2005, Glycosyltransferases: managers of small molecules, Curr. Opin. Plant Biol., 8, 254, 10.1016/j.pbi.2005.03.007
Marillia, 2001, Molecular cloning of a Brassica napus thiohydroximate S-glucosyltransferase gene and its expression in Escherichia coli, Physiol. Plant., 113, 176, 10.1034/j.1399-3054.2001.1130204.x
Grubb, 2004, Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis, Plant J., 40, 893, 10.1111/j.1365-313X.2004.02261.x
Gachon, 2005, Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications, Plant Mol. Biol., 58, 229, 10.1007/s11103-005-5346-5
Piotrowski, 2004, Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure, J. Biol. Chem., 279, 50717, 10.1074/jbc.M407681200
Graser, 2001, The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana, Phytochemistry, 57, 23, 10.1016/S0031-9422(00)00501-X
Graser, 2000, The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae), Arch. Biochem. Biophys., 378, 411, 10.1006/abbi.2000.1812
Textor, 2004, Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle, Planta, 218, 1026, 10.1007/s00425-003-1184-3
Falk, 2004, Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa, Phytochemistry, 65, 1073, 10.1016/j.phytochem.2004.02.021
Field, 2004, Glucosinolate and amino acid biosynthesis in Arabidopsis, Plant Physiol., 135, 828, 10.1104/pp.104.039347
Reintanz, 2001, Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates, Plant Cell, 13, 351, 10.1105/tpc.13.2.351
Chen, 2003, CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis, Plant J., 33, 923, 10.1046/j.1365-313X.2003.01679.x
Kroymann, 2003, Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus, Proc. Natl. Acad. Sci. U. S. A., 100, 14587, 10.1073/pnas.1734046100
Kroymann, 2001, A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway, Plant Physiol., 127, 1077, 10.1104/pp.010416
Brudenell, 1999, The phloem mobility of glucosinolates, J. Exp. Bot., 50, 745, 10.1093/jexbot/50.335.745
Kliebenstein, 2001, Genetic control of natural variation in Arabidopsis glucosinolate accumulation, Plant Physiol., 126, 811, 10.1104/pp.126.2.811
Kliebenstein, 2001, Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis, Plant Cell, 13, 681, 10.1105/tpc.13.3.681
Gao, 2004, Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence, Genome, 47, 666, 10.1139/g04-021
Li, 2003, In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK, Theor. Appl. Genet., 106, 1116, 10.1007/s00122-002-1161-4
Kliebenstein, 2002, Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana, Genetics, 161, 1685, 10.1093/genetics/161.4.1685
Kliebenstein, 2001, Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds, Genetics, 159, 359, 10.1093/genetics/159.1.359
Boerjan, 1995, superroot, a recessive mutation in Arabidopsis, confers auxin overproduction, Plant Cell, 7, 1405, 10.1105/tpc.7.9.1405
King, 1995, A mutation altering auxin homeostasis and plant morphology in Arabidopsis, Plant Cell, 7, 2023, 10.1105/tpc.7.12.2023
Celenza, 1995, A pathway for lateral root formation in Arabidopsis thaliana, Genes Dev., 9, 2131, 10.1101/gad.9.17.2131
Lehman, 1996, HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl, Cell, 85, 183, 10.1016/S0092-8674(00)81095-8
Delarue, 1998, Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis, Plant J., 14, 603, 10.1046/j.1365-313X.1998.00163.x
Barlier, 2000, The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis, Proc. Natl. Acad. Sci. U. S. A., 97, 14819, 10.1073/pnas.260502697
Smolen, 2002, Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway, Genetics, 160, 323, 10.1093/genetics/160.1.323
Hoecker, 2004, The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis, Planta, 219, 195, 10.1007/s00425-004-1211-z
Cohen, 2003, Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis, Trends Plant Sci., 8, 197, 10.1016/S1360-1385(03)00058-X
Mikkelsen, 2000, Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid, J. Biol. Chem., 275, 33712, 10.1074/jbc.M001667200
Zhao, 2002, Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3, Genes Dev., 16, 3100, 10.1101/gad.1035402
Ljung, 2005, Sites and regulation of auxin biosynthesis in Arabidopsis roots, Plant Cell, 17, 1090, 10.1105/tpc.104.029272
Zhao, 2001, A role for flavin monooxygenase-like enzymes in auxin biosynthesis, Science, 291, 306, 10.1126/science.291.5502.306
Ljung, 2002, Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana, Plant Mol. Biol., 49, 249, 10.1023/A:1015298812300
Tobena-Santamaria, 2002, FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture, Genes Dev., 16, 753, 10.1101/gad.219502
Pollmann, 2002, Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana, Planta, 216, 155, 10.1007/s00425-002-0868-4
Vorwerk, 2001, Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster, Planta, 212, 508, 10.1007/s004250000420
Kutz, 2002, A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana, Plant J., 30, 95, 10.1046/j.1365-313X.2002.01271.x
Grsic-Rausch, 2000, Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis, Plant Physiol., 122, 369, 10.1104/pp.122.2.369
Seo, 1998, Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana, Plant Physiol., 116, 687, 10.1104/pp.116.2.687
Tantikanjana, 2001, Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene, Genes Dev., 15, 1577, 10.1101/gad.887301
Tantikanjana, 2004, Functional analysis of the tandem-duplicated P450 genes SPS/BUS/CYP79F1 and CYP79F2 in glucosinolate biosynthesis and plant development by Ds transposition-generated double mutants, Plant Physiol., 135, 840, 10.1104/pp.104.040113
Fontecave, 2004, S-adenosylmethionine: nothing goes to waste, Trends Biochem. Sci., 29, 243, 10.1016/j.tibs.2004.03.007
Hesse, 2003, Molecular aspects of methionine biosynthesis, Trends Plant Sci., 8, 259, 10.1016/S1360-1385(03)00107-9
Brown, 2003, Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana, Phytochemistry, 62, 471, 10.1016/S0031-9422(02)00549-6
Petersen, 2002, Composition and content of glucosinolates in developing Arabidopsis thaliana, Planta, 214, 562, 10.1007/s004250100659
Koroleva, 2000, Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk, Plant Physiol., 124, 599, 10.1104/pp.124.2.599
Bender, 1998, A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 95, 5655, 10.1073/pnas.95.10.5655
Levy, 2005, Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense, Plant J., 43, 79, 10.1111/j.1365-313X.2005.02435.x
Chen, 2001, Long-distance phloem transport of glucosinolates in Arabidopsis, Plant Physiol., 127, 194, 10.1104/pp.127.1.194
Chen, 2000, Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus, J. Biol. Chem., 275, 22955, 10.1074/jbc.M002768200
Thangstad, 2001, Microautoradiographic localisation of a glucosinolate precursor to specific cells in Brassica napus L. embryos indicates a separate transport pathway into myrosin cells, Planta, 213, 207, 10.1007/s004250000491
Mewis, 2005, Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects, Plant Physiol., 138, 1149, 10.1104/pp.104.053389
Hirai, 2005, Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics, J. Biol. Chem., 280, 25590, 10.1074/jbc.M502332200
Maruyama-Nakashita, 2003, Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways, Plant Physiol., 132, 597, 10.1104/pp.102.019802
Reymond, 2004, A conserved transcript pattern in response to a specialist and a generalist herbivore, Plant Cell, 16, 3132, 10.1105/tpc.104.026120
Mikkelsen, 2003, Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways, Plant Physiol., 131, 298, 10.1104/pp.011015
Cipollini, 2004, Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua, Mol. Ecol., 13, 1643, 10.1111/j.1365-294X.2004.02161.x
Traw, 2003, Negative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana, Mol. Ecol., 12, 1125, 10.1046/j.1365-294X.2003.01815.x
Celenza, 2005, The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis, Plant Physiol., 137, 253, 10.1104/pp.104.054395
Kim, 2004, Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2, Plant Mol. Biol., 54, 671, 10.1023/B:PLAN.0000040897.49151.98
Bennett, 2005, The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 homolog causes defects in the induction of secondary metabolite biosynthesis, Plant Biol., 7, 348, 10.1055/s-2005-837634
Wakao, 2005, Genome-wide analysis of glucose-6-phosphate dehydrogenases in Arabidopsis, Plant J., 41, 243, 10.1111/j.1365-313X.2004.02293.x
Mizutani, 1998, Two isoforms of NADPH:cytochrome P450 reductase in Arabidopsis thaliana. Gene structure, heterologous expression in insect cells, and differential regulation, Plant Physiol., 116, 357, 10.1104/pp.116.1.357
Jorgensen, 2005, Metabolon formation and metabolic channeling in the biosynthesis of plant natural products, Curr. Opin. Plant Biol., 8, 280, 10.1016/j.pbi.2005.03.014
Kristensen, 2005, Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome, Proc. Natl. Acad. Sci. U. S. A., 102, 1779, 10.1073/pnas.0409233102
Rask, 2000, Myrosinase: gene family evolution and herbivore defense in Brassicaceae, Plant Mol. Biol., 42, 93, 10.1023/A:1006380021658
Zabala Mde, 2005, Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana, Phytochemistry, 66, 859, 10.1016/j.phytochem.2005.02.026
Svanem, 1997, Metabolism of [α-14C]desulfophenethylglucosinolate in Nasturtium officinale, Phytochemistry, 44, 1251, 10.1016/S0031-9422(96)00741-8
Vercammen, 2001, Monitoring of isothiocyanates emanating from Arabidopsis thaliana upon paraquat spraying, J. Chromatogr. A., 912, 127, 10.1016/S0021-9673(01)00558-1
Mithen, 2003, Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells, Theor. Appl. Genet., 106, 727, 10.1007/s00122-002-1123-x
Faulkner, 1998, Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli, Carcinogenesis, 19, 605, 10.1093/carcin/19.4.605
Burmeister, 2000, High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base, J. Biol. Chem., 275, 39385, 10.1074/jbc.M006796200