pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease
Tài liệu tham khảo
Aggarwal, 2009, Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases, Int. J. Biochem. Cell. Biol., 41, 40, 10.1016/j.biocel.2008.06.010
Alhouayek, 2011, Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation, FASEB J., 25, 2711, 10.1096/fj.10-176602
Arafa, 2009, Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model, Food Chem. Toxicol., 47, 1311, 10.1016/j.fct.2009.03.003
Beloqui, 2013, Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis, Int. J. Pharm., 454, 775, 10.1016/j.ijpharm.2013.05.017
Beloqui, 2013, Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier, J. Control. Release, 166, 115, 10.1016/j.jconrel.2012.12.021
Chereddy, 2013, Combined effect of PLGA and curcumin on wound healing activity, J. Control. Release, 171, 208, 10.1016/j.jconrel.2013.07.015
Coco, 2013, Drug delivery to inflamed colon by nanoparticles: comparison of different strategies, Int. J. Pharm., 440, 3, 10.1016/j.ijpharm.2012.07.017
Collnot, 2012, Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa, J. Control. Release, 161, 235, 10.1016/j.jconrel.2012.01.028
Cui, 2009, Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems, Int. J. Pharm., 371, 148, 10.1016/j.ijpharm.2008.12.009
des Rieux, 2005, Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium, Eur. J. Pharm. Sci., 25, 455, 10.1016/j.ejps.2005.04.015
El-Kamel, 2001, Preparation and evaluation of ketoprofen floating oral delivery system, Int. J. Pharm., 220, 13, 10.1016/S0378-5173(01)00574-9
Epstein, 2010, Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies, Br. J. Nutr., 103, 1545, 10.1017/S0007114509993667
Fernandes, 2012, Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages, Biochem. Biophys. Res. Commun., 420, 857, 10.1016/j.bbrc.2012.03.088
Goel, 2008, Curcumin as “Curecumin”: from kitchen to clinic, Biochem. Pharmacol., 75, 787, 10.1016/j.bcp.2007.08.016
Grimpen, 2010, Advances in the management of inflammatory bowel disease, Intern. Med. J., 40, 258, 10.1111/j.1445-5994.2010.02163.x
Holma, 2001, Acute effects of the cys-leukotriene-1 receptor antagonist, montelukast, on experimental colitis in rats, Eur. J. Pharmacol., 429, 309, 10.1016/S0014-2999(01)01330-9
Jubeh, 2004, Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes, Pharm. Res., 21, 447, 10.1023/B:PHAM.0000019298.29561.cd
Khor, 2011, Genetics and pathogenesis of inflammatory bowel disease, Nature, 474, 307, 10.1038/nature10209
Kitamura, 2008, Genome-wide identification and characterization of transcripts translationally regulated by bacterial lipopolysaccharide in macrophage-like J774.1 cells, Physiol. Genomics, 33, 121, 10.1152/physiolgenomics.00095.2007
Krawisz, 1984, Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models, Gastroenterology, 87, 1344, 10.1016/0016-5085(84)90202-6
Krishna, 2001, Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2, Int. J. Pharm., 222, 77, 10.1016/S0378-5173(01)00698-6
Kunwar, 2006, Transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study, Biochim. Biophys. Acta, 1513, 10.1016/j.bbagen.2006.06.012
Lamprecht, 2001, Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa, Pharm. Res., 18, 788, 10.1023/A:1011032328064
Laroui, H., Dalmasso, G., Nguyen, H.T., Yan Y., Sitaraman, S.V., Merlin, D., 2010. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology, 138, 843–853, (e841–842).
Laroui, 2012, Gastrointestinal delivery of anti-inflammatory nanoparticles, Methods Enzymol., 509, 101, 10.1016/B978-0-12-391858-1.00006-X
Laroui, 2011, Nanomedicine in GI, Am. J. Physiol. Gastrointest. Liver Physiol., 300, G371, 10.1152/ajpgi.00466.2010
Lautenschläger, 2014, Drug delivery strategies in the therapy of inflammatory bowel disease, Adv. Drug Deliv. Rev., 71, 58, 10.1016/j.addr.2013.10.001
Leung, 2009, Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen, Langmuir, 25, 5773, 10.1021/la804215v
Makhlof, 2009, pH-sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model, Eur. J. Pharm. Biopharm., 72, 1, 10.1016/j.ejpb.2008.12.013
Meissner, 2006, Nanoparticles in inflammatory bowel disease: particle targeting versus pH-sensitive delivery, Int. J. Pharm., 316, 138, 10.1016/j.ijpharm.2006.01.032
Melgar, 2005, Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation, Am. J. Physiol. Gastrointest. Liver Physiol., 288, G1328, 10.1152/ajpgi.00467.2004
Memvanga, 2013, An oral malaria therapy: curcumin-loaded lipid-based drug delivery systems combined with é-arteether, J. Control. Release, 172, 904, 10.1016/j.jconrel.2013.09.001
Memvanga, 2013, In vitro lipolysis and intestinal transport of β-arteether-loaded lipid-based drug delivery systems, Pharm. Res., 30, 2694, 10.1007/s11095-013-1094-4
Memvanga, 2014, Development of a liquid chromatographic method for the simultaneous quantification of curcumin, é-arteether, tetrahydrocurcumin and dihydroartemisinin. Application to lipid-based formulations, J. Pharm. Biomed. Anal., 88, 447, 10.1016/j.jpba.2013.09.009
Memvanga, 2012, Formulation design and in vivo antimalarial evaluation of lipid-based drug delivery systems for oral delivery of β-arteether, Eur. J. Pharm. Biopharm., 82, 112, 10.1016/j.ejpb.2012.05.004
Mendoza, 2009, Biological markers in inflammatory bowel disease: practical consideration for clinicians, Gastroenterol. Clin. Biol., 33, S158, 10.1016/S0399-8320(09)73151-3
Rescigno, 2001, Dendritic cells shuttle microbes across gut epithelial monolayers, Immunobiology, 204, 572, 10.1078/0171-2985-00094
Rogler, 2010, Gastrointestinal and liver adverse effects of drugs used for treating IBD, Best Pract. Res. Clin. Gastroenterol., 24, 157, 10.1016/j.bpg.2009.10.011
Schmidt, 2013, Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa – a first in vivo study in human patients, J. Control. Release, 165, 139, 10.1016/j.jconrel.2012.10.019
Stallmach, 2010, Adverse effects of biologics used for treating IBD, Best Pract. Res. Clin. Gastroenterol., 24, 167, 10.1016/j.bpg.2010.01.002
Sugimoto, 2002, Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice, Gastroenterology, 123, 1912, 10.1053/gast.2002.37050
Talaei, 2013, Overcoming therapeutic obstacles in inflammatory bowel diseases: a comprehensive review on novel drug delivery strategies, Eur. J. Pharm. Sci., 49, 712, 10.1016/j.ejps.2013.04.031
Ulbrich, 2010, Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases, J. R. Soc. Interface, 7, S55, 10.1098/rsif.2009.0285.focus
Wahlang, 2011, Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model, Eur. J. Pharm. Biopharm., 77, 275, 10.1016/j.ejpb.2010.12.006
Wirtz, 2007, Mouse models of inflammatory bowel disease, Adv. Drug Deliv. Rev., 59, 1073, 10.1016/j.addr.2007.07.003
Yan, 2009, Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis, PLoS One, 4, e6073, 10.1371/journal.pone.0006073
Yang, 2002, Corticosteroids in Crohn’s disease, Am. J. Gastroenterol., 97, 803, 10.1111/j.1572-0241.2002.05596.x