GABAA receptors: structure, function, pharmacology, and related disorders
Tóm tắt
γ-Aminobutyric acid sub-type A receptors (GABAARs) are the most prominent inhibitory neurotransmitter receptors in the CNS. They are a family of ligand-gated ion channel with significant physiological and therapeutic implications. GABAARs are heteropentamers formed from a selection of 19 subunits: six α (alpha1-6), three β (beta1-3), three γ (gamma1-3), three ρ (rho1-3), and one each of the δ (delta), ε (epsilon), π (pi), and θ (theta) which result in the production of a considerable number of receptor isoforms. Each isoform exhibits distinct pharmacological and physiological properties. However, the majority of GABAARs are composed of two α subunits, two β subunits, and one γ subunit arranged as γ2β2α1β2α1 counterclockwise around the center. The mature receptor has a central chloride ion channel gated by GABA neurotransmitter and modulated by a variety of different drugs. Changes in GABA synthesis or release may have a significant effect on normal brain function. Furthermore, The molecular interactions and pharmacological effects caused by drugs are extremely complex. This is due to the structural heterogeneity of the receptors, and the existence of multiple allosteric binding sites as well as a wide range of ligands that can bind to them. Notably, dysfunction of the GABAergic system contributes to the development of several diseases. Therefore, understanding the relationship between GABAA receptor deficits and CNS disorders thus has a significant impact on the discovery of disease pathogenesis and drug development. To date, few reviews have discussed GABAA receptors in detail. Accordingly, this review aims to summarize the current understanding of the structural, physiological, and pharmacological properties of GABAARs, as well as shedding light on the most common associated disorders.
Tài liệu tham khảo
Simeone TA, Donevan SD, Rho JM (2003) Molecular biology and ontogeny of gamma-aminobutyric acid (GABA) receptors in the mammalian central nervous system. J Child Neurol 18:39–48; discussion 49. https://doi.org/10.1177/08830738030180012101
Ramamoorthi K, Lin Y (2011) The contribution of GABAergic dysfunction to neurodevelopmental disorders. Trends Mol Med 17:452–462. https://doi.org/10.1016/j.molmed.2011.03.003
Korpi ER, Sinkkonen ST (2006) GABA(A) receptor subtypes as targets for neuropsychiatric drug development. Pharmacol Ther 109:12–32. https://doi.org/10.1016/j.pharmthera.2005.05.009
Macdonald RL, Kang J-Q, Gallagher MJ (2010) Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol 588:1861–1869. https://doi.org/10.1113/jphysiol.2010.186999
Bloss CS, Berrettini W, Bergen AW et al (2011) Genetic association of recovery from eating disorders: the role of GABA receptor SNPs. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 36:2222–2232. https://doi.org/10.1038/npp.2011.108
Collins AL, Ma D, Whitehead PL et al (2006) Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7:167–174. https://doi.org/10.1007/s10048-006-0045-1
Ma DQ, Whitehead PL, Menold MM et al (2005) Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77:377–388. https://doi.org/10.1086/433195
Ament SA, Szelinger S, Glusman G et al (2015) Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci U S A 112:3576–3581. https://doi.org/10.1073/pnas.1424958112
Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84:835–867. https://doi.org/10.1152/physrev.00036.2003
Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260. https://doi.org/10.1124/pr.108.00505
Steiger JL, Russek SJ (2004) GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors. Pharmacol Ther 101:259–281. https://doi.org/10.1016/j.pharmthera.2003.12.002
Sieghart W, Fuchs K, Tretter V et al (1999) Structure and subunit composition of GABA(A) receptors. Neurochem Int 34:379–385. https://doi.org/10.1016/s0197-0186(99)00045-5
Backus KH, Arigoni M, Drescher U et al (1993) Stoichiometry of a recombinant GABAA receptor deduced from mutation-induced rectification. Neuroreport 5:285–288. https://doi.org/10.1097/00001756-199312000-00026
Daniel C, Öhman M (2009) RNA editing and its impact on GABAA receptor function. Biochem Soc Trans 37:1399–1403. https://doi.org/10.1042/BST0371399
Darlison MG, Pahal I, Thode C (2005) Consequences of the evolution of the GABA(A) receptor gene family. Cell Mol Neurobiol 25:607–624. https://doi.org/10.1007/s10571-005-4004-4
Sigel E, Baur R, Trube G et al (1990) The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron 5:703–711. https://doi.org/10.1016/0896-6273(90)90224-4
Minier F, Sigel E (2004) Positioning of the alpha-subunit isoforms confers a functional signature to gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 101:7769–7774. https://doi.org/10.1073/pnas.0400220101
Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABAA receptors. J Biol Chem 287:40224–40231. https://doi.org/10.1074/jbc.R112.386664
Baur R, Minier F, Sigel E (2006) A GABAA receptor of defined subunit composition and positioning: concatenation of five subunits. FEBS Lett 580:1616–1620. https://doi.org/10.1016/j.febslet.2006.02.002
Chen ZW, Olsen RW (2007) GABAA receptor associated proteins: a key factor regulating GABAA receptor function. J Neurochem 100:279–294. https://doi.org/10.1111/j.1471-4159.2006.04206.x
Jacob TC, Moss SJ, Jurd R (2008) GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 9:331–343. https://doi.org/10.1038/nrn2370
Chuang S-H, Reddy DS (2018) Genetic and molecular regulation of extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. J Pharmacol Exp Ther 364:180–197. https://doi.org/10.1124/jpet.117.244673
Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720. https://doi.org/10.1038/nrn1496
Sigel E, Lüscher BP (2011) A closer look at the high affinity benzodiazepine binding site on GABAA receptors. Curr Top Med Chem 11:241–246. https://doi.org/10.2174/156802611794863562
Wang M (2011) Neurosteroids and GABA-A receptor function. Front Endocrinol 2:44. https://doi.org/10.3389/fendo.2011.00044
Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2:795–816. https://doi.org/10.2174/1568026023393507
Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804. https://doi.org/10.1038/nn1469
Luscher B, Fuchs T, Kilpatrick CL (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70:385–409. https://doi.org/10.1016/j.neuron.2011.03.024
Kasugai Y, Swinny JD, Roberts JDB et al (2010) Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 32:1868–1888. https://doi.org/10.1111/j.1460-9568.2010.07473.x
Essrich C, Lorez M, Benson JA et al (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci 1:563–571. https://doi.org/10.1038/2798
Baer K, Essrich C, Benson JA et al (1999) Postsynaptic clustering of gamma-aminobutyric acid type A receptors by the gamma3 subunit in vivo. Proc Natl Acad Sci U S A 96:12860–12865. https://doi.org/10.1073/pnas.96.22.12860
Bjurstöm H, Wang J, Ericsson I et al (2008) GABA, a natural immunomodulator of T lymphocytes. J Neuroimmunol 205:44–50. https://doi.org/10.1016/j.jneuroim.2008.08.017
Alam S, Laughton DL, Walding A, Wolstenholme AJ (2006) Human peripheral blood mononuclear cells express GABAA receptor subunits. Mol Immunol 43:1432–1442. https://doi.org/10.1016/j.molimm.2005.07.025
Minuk GY, Zhang M, Gong Y et al (2007) Decreased hepatocyte membrane potential differences and GABAA-beta3 expression in human hepatocellular carcinoma. Hepatology 45:735–745. https://doi.org/10.1002/hep.21562
Adeghate E, Ponery AS (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34:1–6. https://doi.org/10.1054/tice.2002.0217
Mizuta K, Xu D, Pan Y et al (2008) GABAA receptors are expressed and facilitate relaxation in airway smooth muscle. Am J Phys Lung Cell Mol Phys 294:L1206–L1216. https://doi.org/10.1152/ajplung.00287.2007
Roberts E, Frankel S (1950) gamma-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187:55–63
Bown AW, Shelp BJ (1997) The metabolism and functions of [gamma]-Aminobutyric acid. Plant Physiol 115:1–5. https://doi.org/10.1104/pp.115.1.1
Südhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690. https://doi.org/10.1016/j.neuron.2013.10.022
Miles R (1999) A homeostatic switch. Nature 397:215–216. https://doi.org/10.1038/16604
Pehrson AL, Sanchez C (2015) Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des Devel Ther 9:603–624. https://doi.org/10.2147/DDDT.S62912
Rowley NM, Madsen KK, Schousboe A, Steve White H (2012) Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 61:546–558. https://doi.org/10.1016/j.neuint.2012.02.013
Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229. https://doi.org/10.1038/nrn1625
Li Y, Sun H, Chen Z et al (2016) Implications of GABAergic neurotransmission in Alzheimer’s disease. Front Aging Neurosci 8:31. https://doi.org/10.3389/fnagi.2016.00031
Schipper S, Aalbers MW, Rijkers K et al (2016) Tonic GABAA receptors as potential target for the treatment of temporal lobe epilepsy. Mol Neurobiol 53:5252–5265. https://doi.org/10.1007/s12035-015-9423-8
Ge S, Goh ELK, Sailor KA et al (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593. https://doi.org/10.1038/nature04404
Duveau V, Laustela S, Barth L et al (2011) Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis. Eur J Neurosci 34:362–373. https://doi.org/10.1111/j.1460-9568.2011.07782.x
Lee V, MacKenzie G, Hooper A, Maguire J (2016) Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory. Hippocampus 26:1276–1290. https://doi.org/10.1002/hipo.22604
Martin LJ, Zurek AA, MacDonald JF et al (2010) Alpha5GABAA receptor activity sets the threshold for long-term potentiation and constrains hippocampus-dependent memory. J Neurosci 30:5269–5282. https://doi.org/10.1523/JNEUROSCI.4209-09.2010
Yamada KA, Norman WP, Hamosh P, Gillis RA (1982) Medullary ventral surface GABA receptors affect respiratory and cardiovascular function. Brain Res 248:71–78. https://doi.org/10.1016/0006-8993(82)91148-9
Hammond JB, Ahmad F (1998) Hepatic encephalopathy and role of antibenzodiazepines. Am J Ther 5:33–36. https://doi.org/10.1097/00045391-199801000-00006
Termsarasab P, Thammongkolchai T, Frucht SJ (2016) Medical treatment of dystonia. J Clin Mov Disord 3:19. https://doi.org/10.1186/s40734-016-0047-6
Kondziella D (2017) The top 5 neurotransmitters from a clinical neurologist’s perspective. Neurochem Res 42:1767–1771. https://doi.org/10.1007/s11064-016-2101-z
Olsen RW (2018) GABA(A) receptor: positive and negative allosteric modulators. Neuropharmacology 136:10–22. https://doi.org/10.1016/j.neuropharm.2018.01.036
Pedrón VT, Varani AP, Bettler B, Balerio GN (2019) GABA(B) receptors modulate morphine antinociception: pharmacological and genetic approaches. Pharmacol Biochem Behav 180:11–21. https://doi.org/10.1016/j.pbb.2019.02.015
LoTurco JJ, Owens DF, Heath MJ et al (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298. https://doi.org/10.1016/0896-6273(95)90008-x
Fiszman ML, Borodinsky LN, Neale JH (1999) GABA induces proliferation of immature cerebellar granule cells grown in vitro. Brain Res Dev Brain Res 115:1–8. https://doi.org/10.1016/s0165-3806(99)00035-8
Deidda G, Bozarth IF, Cancedda L (2014) Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 8:119. https://doi.org/10.3389/fncel.2014.00119
Song J, Zhong C, Bonaguidi MA et al (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489:150–154. https://doi.org/10.1038/nature11306
Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187. https://doi.org/10.1038/nn1522
Song J, Olsen RHJ, Sun J et al (2016) Neuronal circuitry mechanisms regulating adult mammalian neurogenesis. Cold Spring Harb Perspect Biol 8. https://doi.org/10.1101/cshperspect.a018937
Young SZ, Platel J-C, Nielsen JV et al (2010) GABA(A) Increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels. Front Cell Neurosci 4:8. https://doi.org/10.3389/fncel.2010.00008
Young SZ, Lafourcade CA, Platel J-C et al (2014) GABAergic striatal neurons project dendrites and axons into the postnatal subventricular zone leading to calcium activity. Front Cell Neurosci 8:10. https://doi.org/10.3389/fncel.2014.00010
Watanabe M, Maemura K, Kanbara K et al (2002) GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 213:1–47. https://doi.org/10.1016/s0074-7696(02)13011-7
Xu E, Kumar M, Zhang Y et al (2006) Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab 3:47–58. https://doi.org/10.1016/j.cmet.2005.11.015
Purwana I, Zheng J, Li X et al (2014) GABA promotes human β-cell proliferation and modulates glucose homeostasis. Diabetes 63:4197–4205. https://doi.org/10.2337/db14-0153
Tian J, Dang H, Chen Z et al (2013) γ-Aminobutyric acid regulates both the survival and replication of human β-cells. Diabetes 62:3760–3765. https://doi.org/10.2337/db13-0931
Korol SV, Jin Z, Jin Y et al (2018) Functional characterization of native, high-affinity GABAA receptors in human pancreatic β cells. EBioMedicine 30:273–282. https://doi.org/10.1016/j.ebiom.2018.03.014
Olsen RW (2015) Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes. Adv Pharmacol 73:167–202. https://doi.org/10.1016/bs.apha.2014.11.005
Bartholini G (1984) Pharmacology of the GABAergic system: effects of progabide, a GABA receptor agonist. Psychoneuroendocrinology 9:135–140. https://doi.org/10.1016/0306-4530(84)90032-5
Vashchinkina E, Panhelainen A, Vekovischeva OY et al (2012) GABA site agonist gaboxadol induces addiction-predicting persistent changes in ventral tegmental area dopamine neurons but is not rewarding in mice or baboons. J Neurosci 32:5310–5320. https://doi.org/10.1523/JNEUROSCI.4697-11.2012
Wahab A, Heinemann U, Albus K (2009) Effects of gamma-aminobutyric acid (GABA) agonists and a GABA uptake inhibitor on pharmacoresistant seizure like events in organotypic hippocampal slice cultures. Epilepsy Res 86:113–123. https://doi.org/10.1016/j.eplepsyres.2009.05.008
Johnston GAR (2013) Advantages of an antagonist: bicuculline and other GABA antagonists. Br J Pharmacol 169:328–336. https://doi.org/10.1111/bph.12127
Wang M-D, Rahman M, Zhu D, Bäckström T (2006) Pregnenolone sulphate and Zn2+ inhibit recombinant rat GABA(A) receptor through different channel property. Acta Physiol (Oxford) 188:153–162. https://doi.org/10.1111/j.1748-1716.2006.01617.x
Vega Alanis BA, Iorio MT, Silva LL et al (2020) Allosteric GABA(A) receptor modulators-a review on the most recent heterocyclic chemotypes and their synthetic accessibility. Molecules 25. https://doi.org/10.3390/molecules25040999
Alqazzaz M, Thompson AJ, Price KL et al (2011) Cys-loop receptor channel blockers also block GLIC. Biophys J 101:2912–2918. https://doi.org/10.1016/j.bpj.2011.10.055
Hoffman EJ, Warren EW (1993) Flumazenil: a benzodiazepine antagonist. Clin Pharm 12:641–701
Rudolph U, Knoflach F (2011) Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov 10:685–697. https://doi.org/10.1038/nrd3502
Henschel O, Gipson KE, Bordey A (2008) GABAA receptors, anesthetics and anticonvulsants in brain development. CNS Neurol Disord Drug Targets 7:211–224. https://doi.org/10.2174/187152708784083812
Dawson GR, Maubach KA, Collinson N et al (2006) An inverse agonist selective for alpha5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 316:1335–1345. https://doi.org/10.1124/jpet.105.092320
Lynagh T, Pless SA (2014) Principles of agonist recognition in Cys-loop receptors. Front Physiol 5:160. https://doi.org/10.3389/fphys.2014.00160
Chua HC, Chebib M (2017) GABA(A) Receptors and the diversity in their structure and pharmacology. Adv Pharmacol 79:1–34. https://doi.org/10.1016/bs.apha.2017.03.003
Baumann SW, Baur R, Sigel E (2003) Individual properties of the two functional agonist sites in GABA(A) receptors. J Neurosci 23:11158–11166. https://doi.org/10.1523/JNEUROSCI.23-35-11158.2003
Bergmann R, Kongsbak K, Sørensen PL et al (2013) A unified model of the GABAA receptor comprising agonist and benzodiazepine binding sites. PLoS One 8:e52323. https://doi.org/10.1371/journal.pone.0052323
Laha KT, Tran PN (2013) Multiple tyrosine residues at the GABA binding pocket influence surface expression and mediate kinetics of the GABAA receptor. J Neurochem 124:200–209. https://doi.org/10.1111/jnc.12083
Möhler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol Exp Ther 300:2–8. https://doi.org/10.1124/jpet.300.1.2
Rudolph U, Möhler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498. https://doi.org/10.1146/annurev.pharmtox.44.101802.121429
Ernst M, Brauchart D, Boresch S, Sieghart W (2003) Comparative modeling of GABA(A) receptors: limits, insights, future developments. Neuroscience 119:933–943. https://doi.org/10.1016/s0306-4522(03)00288-4
Benson JA, Löw K, Keist R et al (1998) Pharmacology of recombinant gamma-aminobutyric acidA receptors rendered diazepam-insensitive by point-mutated alpha-subunits. FEBS Lett 431:400–404. https://doi.org/10.1016/s0014-5793(98)00803-5
Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194. https://doi.org/10.1002/cne.903590111
McKernan RM, Rosahl TW, Reynolds DS et al (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nat Neurosci 3:587–592. https://doi.org/10.1038/75761
Hevers W, Lüddens H (1998) The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol Neurobiol 18:35–86. https://doi.org/10.1007/BF02741459
Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid (A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260. https://doi.org/10.1124/pr.108.00505
Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148. https://doi.org/10.1016/j.neuropharm.2008.07.045
Poe MM, Methuku KR, Li G et al (2016) Synthesis and characterization of a novel γ-aminobutyric acid type A (GABA(A)) receptor ligand that combines outstanding metabolic stability, pharmacokinetics, and anxiolytic efficacy. J Med Chem 59:10800–10806. https://doi.org/10.1021/acs.jmedchem.6b01332
Varagic Z, Ramerstorfer J, Huang S et al (2013) Subtype selectivity of α+β- site ligands of GABAA receptors: identification of the first highly specific positive modulators at α6β2/3γ2 receptors. Br J Pharmacol 169:384–399. https://doi.org/10.1111/bph.12153
Simeone X, Siebert DCB, Bampali K et al (2017) Molecular tools for GABA(A) receptors: high affinity ligands for β1-containing subtypes. Sci Rep 7:5674. https://doi.org/10.1038/s41598-017-05757-4
Sternfeld F, Carling RW, Jelley RA et al (2004) Selective, orally active gamma-aminobutyric acidA alpha5 receptor inverse agonists as cognition enhancers. J Med Chem 47:2176–2179. https://doi.org/10.1021/jm031076j
Antkowiak B, Rudolph U (2016) New insights in the systemic and molecular underpinnings of general anesthetic actions mediated by γ-aminobutyric acid A receptors. Curr Opin Anaesthesiol 29:447–453. https://doi.org/10.1097/ACO.0000000000000358
Nutt DJ, Besson M, Wilson SJ et al (2007) Blockade of alcohol’s amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist. Neuropharmacology 53:810–820. https://doi.org/10.1016/j.neuropharm.2007.08.008
Rudolph U, Möhler H (2014) GABAA receptor subtypes: therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. Annu Rev Pharmacol Toxicol 54:483–507. https://doi.org/10.1146/annurev-pharmtox-011613-135947
Olsen RW, Li G-D (2011) GABA(A) receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation. Can J Anaesth 58:206–215. https://doi.org/10.1007/s12630-010-9429-7
Mihic SJ, Ye Q, Wick MJ et al (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389:385–389. https://doi.org/10.1038/38738
Forman SA, Miller KW (2016) Mapping general anesthetic sites in heteromeric γ-aminobutyric acid type A receptors reveals a potential for targeting receptor subtypes. Anesth Analg 123:1263–1273. https://doi.org/10.1213/ANE.0000000000001368
Forman SA, Miller KW (2011) Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels. Can J Anaesth 58:191–205. https://doi.org/10.1007/s12630-010-9419-9
Garcia PS, Kolesky SE, Jenkins A (2010) General anesthetic actions on GABA(A) receptors. Curr Neuropharmacol 8:2–9. https://doi.org/10.2174/157015910790909502
Chiara DC, Dostalova Z, Jayakar SS et al (2012) Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [3H]TDBzl-etomidate, a photoreactive etomidate analogue. Biochemistry 51:836–847. https://doi.org/10.1021/bi201772m
Stewart DS, Hotta M, Desai R, Forman SA (2013) State-dependent etomidate occupancy of its allosteric agonist sites measured in a cysteine-substituted GABAA receptor. Mol Pharmacol 83:1200–1208. https://doi.org/10.1124/mol.112.084558
Chiara DC, Jayakar SS, Zhou X et al (2013) Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor. J Biol Chem 288:19343–19357. https://doi.org/10.1074/jbc.M113.479725
Eaton MM, Cao LQ, Chen Z et al (2015) Mutational analysis of the putative high-affinity propofol binding site in human β3 homomeric GABAA receptors. Mol Pharmacol 88:736–745. https://doi.org/10.1124/mol.115.100347
Franks NP (2015) Structural comparisons of ligand-gated ion channels in open, closed, and desensitized states identify a novel propofol-binding site on mammalian γ-aminobutyric acid type A receptors. Anesthesiology 122:787–794. https://doi.org/10.1097/ALN.0000000000000588
Yip GMS, Chen Z-W, Edge CJ et al (2013) A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 9:715–720. https://doi.org/10.1038/nchembio.1340
Jurd R, Arras M, Lambert S et al (2003) General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J Off Publ Fed Am Soc Exp Biol 17:250–252. https://doi.org/10.1096/fj.02-0611fje
Reynolds DS, Rosahl TW, Cirone J et al (2003) Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 23:8608–8617. https://doi.org/10.1523/JNEUROSCI.23-24-08608.2003
Thompson SA, Whiting PJ, Wafford KA (1996) Barbiturate interactions at the human GABAA receptor: dependence on receptor subunit combination. Br J Pharmacol 117:521–527. https://doi.org/10.1111/j.1476-5381.1996.tb15221.x
Maldifassi MC, Baur R, Sigel E (2016) Functional sites involved in modulation of the GABAA receptor channel by the intravenous anesthetics propofol, etomidate and pentobarbital. Neuropharmacology 105:207–214. https://doi.org/10.1016/j.neuropharm.2016.01.003
Chiara DC, Jounaidi Y, Zhou X et al (2016) General anesthetic binding sites in human α4β3δ γ-aminobutyric acid type A receptors (GABAARs). J Biol Chem 291:26529–26539. https://doi.org/10.1074/jbc.M116.753335
Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575. https://doi.org/10.1038/nrn1703
Akk G, Li P, Bracamontes J et al (2008) Mutations of the GABA-A receptor alpha1 subunit M1 domain reveal unexpected complexity for modulation by neuroactive steroids. Mol Pharmacol 74:614–627. https://doi.org/10.1124/mol.108.048520
Hosie AM, Wilkins ME, da Silva HMA, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489. https://doi.org/10.1038/nature05324
Li P, Bandyopadhyaya AK, Covey DF et al (2009) Hydrogen bonding between the 17beta-substituent of a neurosteroid and the GABA(A) receptor is not obligatory for channel potentiation. Br J Pharmacol 158:1322–1329. https://doi.org/10.1111/j.1476-5381.2009.00390.x
Hosie AM, Wilkins ME, Smart TG (2007) Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther 116:7–19. https://doi.org/10.1016/j.pharmthera.2007.03.011
Hanrahan JR, Chebib M, Johnston GAR (2015) Interactions of flavonoids with ionotropic GABA receptors. Adv Pharmacol 72:189–200. https://doi.org/10.1016/bs.apha.2014.10.007
Hanrahan JR, Chebib M, Johnston GAR (2011) Flavonoid modulation of GABA(A) receptors. Br J Pharmacol 163:234–245. https://doi.org/10.1111/j.1476-5381.2011.01228.x
Wang G, Clark CG, Rodgers FG (2002) Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. J Clin Microbiol 40:3613–3619. https://doi.org/10.1128/jcm.40.10.3613-3619.2002
Fernandez SP, Mewett KN, Hanrahan JR et al (2008) Flavan-3-ol derivatives are positive modulators of GABA(A) receptors with higher efficacy for the alpha(2) subtype and anxiolytic action in mice. Neuropharmacology 55:900–907. https://doi.org/10.1016/j.neuropharm.2008.06.069
Wang F, Xu Z, Yuen CT et al (2007) 6,2’-Dihydroxyflavone, a subtype-selective partial inverse agonist of GABAA receptor benzodiazepine site. Neuropharmacology 53:574–582. https://doi.org/10.1016/j.neuropharm.2007.06.018
Kavvadias D, Sand P, Youdim KA et al (2004) The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br J Pharmacol 142:811–820. https://doi.org/10.1038/sj.bjp.0705828
Atakan Z (2012) Cannabis, a complex plant: different compounds and different effects on individuals. Ther Adv Psychopharmacol 2:241–254. https://doi.org/10.1177/2045125312457586
Ruffolo G, Cifelli P, Roseti C et al (2018) A novel GABAergic dysfunction in human Dravet syndrome. Epilepsia 59:2106–2117. https://doi.org/10.1111/epi.14574
An D, Peigneur S, Hendrickx LA, Tytgat J (2020) Targeting cannabinoid receptors: current status and prospects of natural products. Int J Mol Sci 21. https://doi.org/10.3390/ijms21145064
Lambert DM, Fowler CJ (2005) The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications. J Med Chem 48:5059–5087. https://doi.org/10.1021/jm058183t
Katona I, Freund TF (2012) Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 35:529–558. https://doi.org/10.1146/annurev-neuro-062111-150420
Sigel E, Baur R, Rácz I et al (2011) The major central endocannabinoid directly acts at GABA(A) receptors. Proc Natl Acad Sci U S A 108:18150–18155. https://doi.org/10.1073/pnas.1113444108
Baur R, Gertsch J, Sigel E (2013) Do N-arachidonyl-glycine (NA-glycine) and 2-arachidonoyl glycerol (2-AG) share mode of action and the binding site on the β2 subunit of GABAA receptors? PeerJ 1:e149. https://doi.org/10.7717/peerj.149
Golovko T, Min R, Lozovaya N et al (2015) Control of inhibition by the direct action of cannabinoids on GABAA receptors. Cereb Cortex 25:2440–2455. https://doi.org/10.1093/cercor/bhu045
Crossley SWM, Tong G, Lambrecht MJ et al (2020) Synthesis of (-)-picrotoxinin by late-stage strong bond activation. J Am Chem Soc 142:11376–11381. https://doi.org/10.1021/jacs.0c05042
Cao J, Thor W, Yang S et al (2019) Synthesis of the tricyclic picrotoxane motif by an oxidative cascade cyclization. Org Lett 21:4896–4899. https://doi.org/10.1021/acs.orglett.9b01806
Nilsson E, Eyrich B (1950) On treatment of barbiturate poisoning. Acta Med Scand 137:381–389. https://doi.org/10.1111/j.0954-6820.1950.tb12129.x
Pericić D, Mirković K, Jazvinsćak M, Besnard F (1998) [3H]t-butylbicycloorthobenzoate binding to recombinant alpha1beta2gamma2s GABA(A) receptor. Eur J Pharmacol 360:99–104. https://doi.org/10.1016/s0014-2999(98)00661-x
Kalueff AV (2007) Mapping convulsants’ binding to the GABA-A receptor chloride ionophore: a proposed model for channel binding sites. Neurochem Int 50:61–68. https://doi.org/10.1016/j.neuint.2006.07.004
Jembrek MJ, Vlainic J (2015) GABA receptors: pharmacological potential and pitfalls. Curr Pharm Des 21:4943–4959. https://doi.org/10.2174/1381612821666150914121624
Othman NA, Gallacher M, Deeb TZ et al (2012) Influences on blockade by t-butylbicyclo-phosphoro-thionate of GABA(A) receptor spontaneous gating, agonist activation and desensitization. J Physiol 590:163–178. https://doi.org/10.1113/jphysiol.2011.213249
Brown N, Kerby J, Bonnert TP et al (2002) Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol 136:965–974. https://doi.org/10.1038/sj.bjp.0704795
Stórustovu SI, Ebert B (2006) Pharmacological characterization of agonists at delta-containing GABAA receptors: functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. J Pharmacol Exp Ther 316:1351–1359. https://doi.org/10.1124/jpet.105.092403
Jensen ML, Wafford KA, Brown AR et al (2013) A study of subunit selectivity, mechanism and site of action of the delta selective compound 2 (DS2) at human recombinant and rodent native GABA(A) receptors. Br J Pharmacol 168:1118–1132. https://doi.org/10.1111/bph.12001
Jacobs MP, Leblanc GG, Brooks-Kayal A et al (2009) Curing epilepsy: progress and future directions. Epilepsy Behav 14:438–445. https://doi.org/10.1016/j.yebeh.2009.02.036
Hesdorffer DC, Beck V, Begley CE et al (2013) Research implications of the Institute of Medicine report, epilepsy across the spectrum: promoting health and understanding. Epilepsia 54:207–216. https://doi.org/10.1111/epi.12056
Ben-Ari Y, Gaiarsa J-L, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284. https://doi.org/10.1152/physrev.00017.2006
Kaila K, Ruusuvuori E, Seja P et al (2014) GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol 26:34–41. https://doi.org/10.1016/j.conb.2013.11.004
Palma E, Ruffolo G, Cifelli P et al (2017) Modulation of GABAA receptors in the treatment of epilepsy. Curr Pharm Des 23:5563–5568. https://doi.org/10.2174/1381612823666170809100230
Janković SM, Dješević M, Janković SV (2021) Experimental GABA A receptor agonists and allosteric modulators for the treatment of focal epilepsy. J Exp Pharmacol 13:235–244. https://doi.org/10.2147/JEP.S242964
Braat S, Kooy RF (2015) The GABAA receptor as a therapeutic target for neurodevelopmental disorders. Neuron 86:1119–1130. https://doi.org/10.1016/j.neuron.2015.03.042
Hirose S (2014) Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy. Prog Brain Res 213:55–85. https://doi.org/10.1016/B978-0-444-63326-2.00003-X
Mele M, Costa RO, Duarte CB (2019) Alterations in GABA(A)-receptor trafficking and synaptic dysfunction in brain disorders. Front Cell Neurosci 13:77. https://doi.org/10.3389/fncel.2019.00077
Kang J-Q, Shen W, Zhou C et al (2015) The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci 18:988–996. https://doi.org/10.1038/nn.4024
Dejanovic B, Djémié T, Grünewald N et al (2017) Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy. EMBO Mol Med 9:1764. https://doi.org/10.15252/emmm.201708525
Choii G, Ko J (2015) Gephyrin: a central GABAergic synapse organizer. Exp Mol Med 47:e158. https://doi.org/10.1038/emm.2015.5
Fang M, Shen L, Yin H et al (2011) Downregulation of gephyrin in temporal lobe epilepsy neurons in humans and a rat model. Synapse 65:1006–1014. https://doi.org/10.1002/syn.20928
Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112:5147–5192. https://doi.org/10.1021/cr3000994
Xu Y, Zhao M, Han Y, Zhang H (2020) GABAergic inhibitory interneuron deficits in Alzheimer’s disease: implications for treatment. Front Neurosci 14:660. https://doi.org/10.3389/fnins.2020.00660
Verret L, Mann EO, Hang GB et al (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149:708–721. https://doi.org/10.1016/j.cell.2012.02.046
Craddock N, Jones L, Jones IR et al (2010) Strong genetic evidence for a selective influence of GABA A receptors on a component of the bipolar disorder phenotype. Mol Psychiatry 15:146–153. https://doi.org/10.1038/mp.2008.66
Frere S, Slutsky I (2018) Alzheimer’s disease: from firing instability to homeostasis network collapse. Neuron 97:32–58. https://doi.org/10.1016/j.neuron.2017.11.028
Selkoe DJ (2019) Early network dysfunction in Alzheimer’s disease. Science 365:540–541. https://doi.org/10.1126/science.aay5188
Govindpani K, Turner C, Waldvogel HJ et al (2020) Impaired expression of GABA signaling components in the Alzheimer’s disease middle temporal gyrus. Int J Mol Sci 21. https://doi.org/10.3390/ijms21228704
Gueli MC, Taibi G (2013) Alzheimer’s disease: amino acid levels and brain metabolic status. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 34:1575–1579. https://doi.org/10.1007/s10072-013-1289-9
Bareggi SR, Franceschi M, Bonini L et al (1982) Decreased CSF concentrations of homovanillic acid and gamma-aminobutyric acid in Alzheimer’s disease. Age- or disease-related modifications? Arch Neurol 39:709–712. https://doi.org/10.1001/archneur.1982.00510230035010
Grouselle D, Winsky-Sommerer R, David JP et al (1998) Loss of somatostatin-like immunoreactivity in the frontal cortex of Alzheimer patients carrying the apolipoprotein epsilon 4 allele. Neurosci Lett 255:21–24. https://doi.org/10.1016/s0304-3940(98)00698-3
Limon A, Reyes-Ruiz JM, Miledi R (2012) Loss of functional GABA(A) receptors in the Alzheimer diseased brain. Proc Natl Acad Sci U S A 109:10071–10076. https://doi.org/10.1073/pnas.1204606109
Zhang S-Q, Obregon D, Ehrhart J et al (2013) Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res 91:1239–1246. https://doi.org/10.1002/jnr.23244
Defazio G, Jankovic J, Giel JL, Papapetropoulos S (2013) Descriptive epidemiology of cervical dystonia. Tremor Other Hyperkinet Mov 3. https://doi.org/10.7916/D80C4TGJ
Jinnah HA, Berardelli A, Comella C et al (2013) The focal dystonias: current views and challenges for future research. Mov Disord 28:926–943. https://doi.org/10.1002/mds.25567
Jinnah HA, Factor SA (2015) Diagnosis and treatment of dystonia. Neurol Clin 33:77–100. https://doi.org/10.1016/j.ncl.2014.09.002
Berman BD, Pollard RT, Shelton E et al (2018) GABA(A) Receptor availability changes underlie symptoms in isolated cervical dystonia. Front Neurol 9:188. https://doi.org/10.3389/fneur.2018.00188
Dresel C, Li Y, Wilzeck V et al (2014) Multiple changes of functional connectivity between sensorimotor areas in focal hand dystonia. J Neurol Neurosurg Psychiatry 85(1245):LP – 1252. https://doi.org/10.1136/jnnp-2013-307127
Guehl D, Burbaud P, Boraud T, Bioulac B (2000) Bicuculline injections into the rostral and caudal motor thalamus of the monkey induce different types of dystonia. Eur J Neurosci 12:1033–1037. https://doi.org/10.1046/j.1460-9568.2000.00999.x
Groth CL, Brown M, Honce JM et al (2021) Cervical dystonia is associated with aberrant inhibitory signaling within the thalamus. Front Neurol 11:1259
Clarkson AN, Huang BS, Macisaac SE et al (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468:305–309. https://doi.org/10.1038/nature09511
Wu C, Sun D (2015) GABA receptors in brain development, function, and injury. Metab Brain Dis 30:367–379. https://doi.org/10.1007/s11011-014-9560-1
El-Ansary A, Al-Ayadhi L (2014) GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J Neuroinflammation 11:189. https://doi.org/10.1186/s12974-014-0189-0
Pizzarelli R, Cherubini E (2011) Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011:297153. https://doi.org/10.1155/2011/297153
Mendez MA, Horder J, Myers J et al (2013) The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study. Neuropharmacology 68:195–201. https://doi.org/10.1016/j.neuropharm.2012.04.008
Horder J, Andersson M, Mendez MA et al (2018) GABA(A) receptor availability is not altered in adults with autism spectrum disorder or in mouse models. Sci Transl Med 10. https://doi.org/10.1126/scitranslmed.aam8434
Mahdavi M, Kheirollahi M, Riahi R et al (2018) Meta-analysis of the association between GABA receptor polymorphisms and autism spectrum disorder (ASD). J Mol Neurosci 65:1–9. https://doi.org/10.1007/s12031-018-1073-7
Mueller TM, Meador-Woodruff JH (2020) Post-translational protein modifications in schizophrenia. NPJ Schizophr 6:5. https://doi.org/10.1038/s41537-020-0093-9
Williams SE, Mealer RG, Scolnick EM et al (2020) Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry 25:3198–3207. https://doi.org/10.1038/s41380-020-0761-1
Mueller TM, Remedies CE, Haroutunian V, Meador-Woodruff JH (2015) Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain. Transl Psychiatry 5:e612. https://doi.org/10.1038/tp.2015.102
Mueller TM, Haroutunian V, Meador-Woodruff JH (2014) N-Glycosylation of GABAA receptor subunits is altered in schizophrenia. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 39:528–537. https://doi.org/10.1038/npp.2013.190
Marques TR, Ashok AH, Angelescu I et al (2020) GABA-A receptor differences in schizophrenia: a positron emission tomography study using [(11)C]Ro154513. Mol Psychiatry. https://doi.org/10.1038/s41380-020-0711-y
Fogaça MV, Duman RS (2019) Cortical GABAergic Dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci 13:87. https://doi.org/10.3389/fncel.2019.00087
Kim YS, Yoon B-E (2017) Altered GABAergic signaling in brain disease at various stages of life. Exp Neurobiol 26:122–131. https://doi.org/10.5607/en.2017.26.3.122
Auger ML, Meccia J, Floresco SB (2017) Regulation of sustained attention, false alarm responding and implementation of conditional rules by prefrontal GABA(A) transmission: comparison with NMDA transmission. Psychopharmacology 234:2777–2792. https://doi.org/10.1007/s00213-017-4670-1
Paine TA, Chang S, Poyle R (2020) Contribution of GABA(A) receptor subunits to attention and social behavior. Behav Brain Res 378:112261. https://doi.org/10.1016/j.bbr.2019.112261
Paine TA, Slipp LE, Carlezon WAJ (2011) Schizophrenia-like attentional deficits following blockade of prefrontal cortex GABAA receptors. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 36:1703–1713. https://doi.org/10.1038/npp.2011.51
Asinof SK, Paine TA (2013) Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task. Neuropharmacology 65:39–47. https://doi.org/10.1016/j.neuropharm.2012.09.009
Pehrson AL, Bondi CO, Totah NKB, Moghaddam B (2013) The influence of NMDA and GABA(A) receptors and glutamic acid decarboxylase (GAD) activity on attention. Psychopharmacology 225:31–39. https://doi.org/10.1007/s00213-012-2792-z
Paine TA, Swedlow N, Swetschinski L (2017) Decreasing GABA function within the medial prefrontal cortex or basolateral amygdala decreases sociability. Behav Brain Res 317:542–552. https://doi.org/10.1016/j.bbr.2016.10.012
Piantadosi PT, Khayambashi S, Schluter MG et al (2016) Perturbations in reward-related decision-making induced by reduced prefrontal cortical GABA transmission: relevance for psychiatric disorders. Neuropharmacology 101:279–290. https://doi.org/10.1016/j.neuropharm.2015.10.007