Bi-objective decision making in global optimization based on statistical models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Calvin, J., Žilinskas, A.: A one-dimensional P-algorithm with convergence rate $$o(n^{-3+\delta })$$ for smooth functions. J. Optim. Theory Appl. 106, 297–307 (2000)
Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.: A multicriteria generalization of Bayesian global optimization. In: Pardalos, P.M., Zhigljavsky, A., Žilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization, pp. 229–242. Springer, Berlin (2016)
Gimbutas, A., Žilinskas, A.: An algorithm of simplicial Lipschitz optimization with the bi-criteria selection of simplices for the bi-section. J. Global Optim. (2018). https://doi.org/10.1007/s10898-017-0550-9
Huang, D., Allen, T., Notz, W., Miller, R.: Sequential kriging optimization using multiple-fidelity evaluations. Struct. Multidiscip. Optim. 32, 369–382 (2006)
Jones, D.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)
Kleijnen, J., van Beers, W., van Nieuwenhuyse, I.: Expected improvement in efficient global optimization through bootstrapped kriging. J. Glob. Optim. 54, 59–73 (2012)
Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evolut. Comput. 10(1), 50–66 (2006)
Knowles, J., Corne, D., Reynolds, A.: Noisy multiobjective optimization on a budget of 250 evaluations. In: Ehrgott, M., et al. (eds.) Lecture Notes in Computer Science, vol. 5467, pp. 36–50. Springer (2009)
Kushner, H.: A versatile stochastic model of a function of unknown and time-varying form. J. Math. Anal. Appl. 5, 150–167 (1962)
Mockus, J.: On Bayes methods for seeking an extremum. Avtomatika i Vychislitelnaja Technika 3, 53–62 (1972). in Russian
Pepelyshev, A.: Fixed-domain asymtotics of the maximum likelihood estiomator and the gaussian process approach for deterministic models. Stat. Methodol. 8(4), 356–362 (2011)
Picheny, V.: Multiobjective optimization using gaussian process emulators via stepwise uncertainty reduction. Stat. Comput. 25, 1265–1280 (2015)
Sasena, M.: Dissertation: Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations. Michigan University (2002)
Strongin, R.: Information method of global minimization in the presence of noise. Eng. Cybern. 6, 118–126 (1969). in Russian
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)
Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, Berlin (2008)
Žilinskas, A.: One-step Bayesian method for the search of the optimum of one-variable functions. Cybernetics 1, 139–144 (1975). in Russian
Žilinskas, A.: Axiomatic characterization of a global optimization algorithm and investigation of its search strategies. Oper. Res. Lett. 4, 35–39 (1985)
Žilinskas, A.: A statistical model-based algorithm for black-box multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–92 (2014)
Žilinskas, A.: Global search as a sequence of rational decisions under uncertainty. In: AIP Conference Proceedings, vol. 1776, No. 020001, pp. 1–8 (2016)
Žilinskas, A., Zhigljavsky, A.: Stochastic global optimization: a review on the occasion of 25 years of Informatica. Informatica 27(2), 229–256 (2016)