Multiple-soliton solutions for the generalized -dimensional and the generalized -dimensional Ito equations
Tài liệu tham khảo
Ito, 1980, An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher order, J. Phys. Soc. Jpn., 49, 771, 10.1143/JPSJ.49.771
Li, 2007, Soliton solutions to a higher order Ito equation: Pfaffian technique, Phys. Lett. A, 363, 1, 10.1016/j.physleta.2006.10.080
Springael, 1996, Bilinear characterization of higher order Ito equation, J. Phys. Soc. Jpn., 65, 1222, 10.1143/JPSJ.65.1222
Hirota, 1974, A new form of Bäcklund transformations and its relation to the inverse scattering problem, Prog. Theor. Phys., 52, 1498, 10.1143/PTP.52.1498
Hirota, 2004
Hirota, 1971, Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192, 10.1103/PhysRevLett.27.1192
Hirota, 1972, Exact solutions of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Jpn., 33, 1456, 10.1143/JPSJ.33.1456
Hirota, 1972, Exact solutions of the Sine-Gordon equation for multiple collisions of solitons, J. Phys. Soc. Jpn., 33, 1459, 10.1143/JPSJ.33.1459
Sawada, 1974, A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Prog. Theor. Phys., 51, 1355, 10.1143/PTP.51.1355
Lax, 1968, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., 21, 467, 10.1002/cpa.3160210503
Matsuno, 1984
Goktas, 1999, Symbolic computation of conserved densities for systems of nonlinear evolution equations, J. Symbol. Comput., 11, 1
Hietarinta, 1987, A search for bilinear equations passing Hirota’s three-soliton condition I KdV-type bilinear equations, J. Math. Phys., 28, 1732, 10.1063/1.527815
Hietarinta, 1987, A search for bilinear equations passing Hirota’s three-soliton condition II mKdV-type bilinear equations, J. Math. Phys., 28, 2094, 10.1063/1.527421
Hereman, 1980, Symbolic software for soliton theory, Acta Appl. Math., Phys. Lett. A, 76, 95
Hereman, 1997, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simul., 43, 13, 10.1016/S0378-4754(96)00053-5
Weiss, 1984, On classes of integrable systems and the Painlevé property, J. Math. Phys., 25, 13, 10.1063/1.526009
Malfliet, 2004, The tanh method a tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math., 164–165, 529, 10.1016/S0377-0427(03)00645-9
Malfliet, 1992, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 650, 10.1119/1.17120
Malfliet, 1996, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54, 563, 10.1088/0031-8949/54/6/003
Malfliet, 1996, The tanh method: II. Perturbation technique for conservative systems, Phys. Scripta, 54, 569, 10.1088/0031-8949/54/6/004
Wazwaz, 2004, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154, 713, 10.1016/S0096-3003(03)00745-8
Wazwaz, 2002
Wazwaz, 2007, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput., 184, 1002, 10.1016/j.amc.2006.07.002
Wazwaz, 2007, The tanh–coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188, 1467, 10.1016/j.amc.2006.11.013
Wazwaz, 2002, New solitary-wave special solutions with compact support for the nonlinear dispersive K(m,n) equations, Chaos Soliton Fract., 13, 321, 10.1016/S0960-0779(00)00249-6
Wazwaz, 2007, Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh–coth method, Appl. Math. Comput., 190, 633, 10.1016/j.amc.2007.01.056
Wazwaz, 2007, The tanh–coth and the sech methods for exact solutions of the Jaulent–Miodek equation, Phys. Lett. A, 366, 85, 10.1016/j.physleta.2007.02.011
Wazwaz, 2007, Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. Math. Comput., 190, 1198, 10.1016/j.amc.2007.02.003
Wazwaz, 2007, Multiple-soliton solutions for the Boussinesq equation, Appl. Math. Comput., 92, 479, 10.1016/j.amc.2007.03.023