An experimental study of steel fiber-reinforced high-strength concrete slender columns under cyclic loading

Engineering Structures - Tập 57 - Trang 565-577 - 2013
Karen E. Caballero-Morrison1, J.L. Bonet1, Juan Navarro-Gregori1, Pedro Serna-Ros1
1Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Tài liệu tham khảo

ACI 318-08. Building code requirements for reinforced concrete. American Concrete Institute, Detroit; 2008. p. 471. Aoude, 2009, Axial load response of columns constructed with fibers and self-consolidating concrete, ACI Struct J, 106, 349 Bae, 2006, Seismic performance of reinforced concrete columns: P–Δ effect, ACI Spec Publ, 236, 61 Barrera, 2011, Experimental tests of slender reinforced concrete columns under combined axial load and lateral force, Eng Struct, 33, 3676, 10.1016/j.engstruct.2011.08.003 Berry M, Parrish M, Eberhard M. PEER structural performance database user’s manual. Pacific Earthquake Engineering Research Center, University of California, Berkeley; 2004 <www.ce.washington.edu/~peera1>. Caballero-Morison, 2012, Behaviour of steel fibre – reinforced normal – strength concrete slender columns under cyclic loading, Eng Struct, 39, 162, 10.1016/j.engstruct.2012.02.003 Campione, 1999, Compressive stress–strain behaviour of normal and high strength carbon fibre concrete reinforced with spirals, ACI Mater J, 96, 27 Campione, 2010, Behavior of fiber-reinforced concrete columns under axially and eccentrically compressive loads, ACI Struct J, 107, 272 CEB-FIP, Bulletin 25. State of art report (displacement-based seismic design of reinforced concrete buildings). Task Group 7.2, Mayo 2003, Lausanne – Switzerland; 2003. Collins Michael, 1993, Structural design considerations for high-strength concrete, Concr Int, 27 Comisión Permanente del Hormigón. Code on structural concrete EHE-08. Ministerio de Fomento. European Committee for Standardization. Eurocode 2: design of concrete structures – Part 1: General rules and rules for buildings. EN 1992-1-1; December 2004. European Committee for Standardization. Eurocode 8: design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings. EN 1998-1; 2004. p. 232. Federal Emergency Management Agency, FEMA-P-750. NEHRP recommended provisions for new buildings and other structures. Washington, DC; 2009. Foster, 2001, On behaviour of high-strength concrete columns: cover spalling, steel fibers and ductility, ACI Struct J, 98, 583 Ho, 2003, Inelastic design of low-axially loaded high-strength reinforced concrete columns, Eng Struct, 25, 1083, 10.1016/S0141-0296(03)00050-6 Hsu, 1997, Stress–strain behavior of steel fiber high strength concrete under compression, ACI Struct J, 97, 448 International Federation for Structural Concrete (fib). Model code 2010. First complete draft. Bulletin 55 and 56; March 2010. Khoury SS, Sheikh SA. Behavior of normal and high strength confined concrete columns with and without stubs. Research report no. UHCEE 91-4, University of Houston, Houston, TX; December; 1991. 345 pp. Légeron, 2000, Behavior of high-strength concrete columns under cyclic flexure and constant axial load, ACI Struct J, 97, 591 Li B, Park R, Tanaka H. Effect of confinement on the behaviour of high strength concrete columns under seismic loading. In: Proceeding Pacific conference on earthquake engineering, New Zealand; 1997. p. 67–78. Mansur, 1999, Stress – strain relationship of high strength fibre concrete in compression, J Mater Civil Eng, 11, 21, 10.1061/(ASCE)0899-1561(1999)11:1(21) Ministerio de Fomento. Norma de construcción sismorresistente: parte general y edificación (NCSR-02). RD 997/2002. Pam, 2009, Length of critical region for confinement steel in limited ductility high-strength reinforced concrete columns, Eng Struct, 31, 2896, 10.1016/j.engstruct.2009.07.015 Panagiotakos, 2001, Deformations of reinforced concrete members at yielding and ultimate, ACI J Struct, 98, 135 Paultre, 2001, Influence of concrete strength and transverse reinforcement yield strength on behavior of high-strength concrete columns, ACI Struct J, 98, 490 Paultre, 2010, Behaviour of steel fiber-reinforced high-strength concrete columns under uniaxial compression, ASCE J Struct Eng, 136, 1225, 10.1061/(ASCE)ST.1943-541X.0000211 Priestley, 1987, Strength and ductility of concrete bridge columns under seismic loading, ACI Struct J, 84, 6176 Sharma, 2007, Tie-confined fibre-reinforced high strength concrete short columns, Mag Concr Res, 59, 757, 10.1680/macr.2007.59.10.757 UNE-EN 10002-1. Metallic materials. Tensile testing. Part 1: Method of test at ambient temperature. AENOR. Spanish Association for Standards and Certification; July 2002. UNE-EN 12390-3. Ensayos de hormigón endurecido – Parte 3: Determinación de la resistencia a compresión de probetas. Asociación española de normalización y certificación, AENOR; December 2000. UNE-EN 14651:2007. Método de ensayo para hormigón con fibras metálicas. Determinación de la resistencia a la tracción por flexión (límite de proporcionalidad (LOP), resistencia residual. Asociación española de normalización y certificación, AENOR; September 2007. UNE-EN 197-1:2000. Cemento – Parte 1: Composición, especificación y criterio de conformidad para cementos comunes. Asociación española de normalización y certificación, AENOR. Diciembre; December, 2000. Wang Q, Zhao G, Lin L. Effect of axial load ratio and stirrups volume ratio on ductility of high-strength concrete columns. ACI special publication 149-24, October 1; 1994. p. 433–48. Yamashiro R, Siess CP. Moment-rotation characteristics of reinforced concrete members subjected to bending, shear, and axial load. Civil engineering studies, structural research series no. 260, University of Illinois, Urbana; 1962.